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Plenoptic Image Motion Deblurring
Paramanand Chandramouli , Meiguang Jin, Daniele Perrone, and Paolo Favaro, Member, IEEE

Abstract— We propose a method to remove motion blur in
a single light field captured with a moving plenoptic camera.
Since motion is unknown, we resort to a blind deconvolution
formulation, where one aims to identify both the blur point
spread function and the latent sharp image. Even in the absence
of motion, light field images captured by a plenoptic camera
are affected by a non-trivial combination of both aliasing and
defocus, which depends on the 3D geometry of the scene.
Therefore, motion deblurring algorithms designed for standard
cameras are not directly applicable. Moreover, many state of
the art blind deconvolution algorithms are based on iterative
schemes, where blurry images are synthesized through the imag-
ing model. However, current imaging models for plenoptic images
are impractical due to their high dimensionality. We observe
that plenoptic cameras introduce periodic patterns that can
be exploited to obtain highly parallelizable numerical schemes
to synthesize images. These schemes allow extremely efficient
GPU implementations that enable the use of iterative methods.
We can then cast blind deconvolution of a blurry light field image
as a regularized energy minimization to recover a sharp high-
resolution scene texture and the camera motion. Furthermore,
the proposed formulation can handle non-uniform motion blur
due to camera shake as demonstrated on both synthetic and real
light field data.

Index Terms— Plenoptic camera, light field image, motion blur,
blind deconvolution.

I. INTRODUCTION

IN THE past few years, plenoptic cameras have entered into
the realm of consumer photography [1], [2]. These cameras

are equipped with 3D reconstruction and digital refocusing
capabilities, not possible in traditional devices. This has led
to an increased interest in the scientific community in high-
quality reconstructions from light fields. As these commercial
cameras are portable, camera shake is sometimes unavoidable
and may result in blurry light field images. Similarly, moving
objects can also cause the images to appear blurry.

Until now most of the research works on light field (LF)
image processing have focused on depth estimation and super-
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resolution rather than motion deblurring. In contrast, motion
blur in conventional cameras has been widely studied and cur-
rent methods achieve remarkable results (see, for instance, [9],
[16], [28], [48]). Unfortunately, the imaging mechanism of a
conventional camera and LF camera are quite different. Due to
the additional microlens array between the main lens and the
sensors in the LF camera, an LF image consists of a rearranged
set of views of the scene that are highly under-sampled and
blurred [30]. Consequently, motion deblurring methods that
are applicable to conventional images cannot be adapted in a
straightforward manner.

In this paper, we propose a motion deblurring scheme
for images captured from a microlens-array based light field
camera. From a single motion blurred LF image, we estimate
the high-resolution sharp scene texture. An LF image can
be related to the scene texture through a space-variant point
spread function (PSF) which models the image formation
mechanism. In addition, the sharp scene texture is related to
the blurry texture in terms of a motion blur PSF. Modeling
the LF image generation by taking into account these effects
turns out to be very computationally intensive and memory
inefficient. However, we show that, for constant depth scenes,
it is possible to describe a motion blurred light field image as
a linear combination of parallel convolutions (see sec. III-B).
As a result, the model is extremely computationally and mem-
ory efficient. To model general 3D scenes, we consider them
to be composed of layers having constant depth. We develop a
fast GPU implementation that estimates high resolution scene
texture from light field image for each depth layer. For each
layer, we estimate the space-variant motion blur PSF through
blind deconvolution. Finally, we solve for the sharp scene
texture within an energy minimization scheme that accounts
for alignment and distortion correction. We demonstrate the
performance of our algorithm on real and synthetic images.

II. RELATED WORK

Since plenoptic image motion deblurring is related to image
blind deconvolution as well as light field reconstruction, we
provide a brief overview of research in these topics.

A. Single Image Motion Deblurring
Motion deblurring involves the joint estimation of a sharp

image and a blur kernel. Because of its ill-posedness, motion
deblurring algorithms enforce suitable priors for the sharp
image and the blur kernel. With these priors, the motion blur
kernel is initially estimated and finally the sharp image is
recovered through non-blind deblurring [19], [27], [41], [48].
Popular choices of prior include Laplace distribution [28], total
variation (TV) regularization [14] or L0 regularization [50].
Other methods encourage sharp edges by using a shock
filter [16], [48] or a dictionary of sharp edges [37]. For
the blur function, the choices for prior include Gaussian
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distribution [48], or a sparsity-inducing distribution [19].
Levin et al. [27] have shown that a joint MAP estimation of the
sharp image and blur function cannot lead to a correct estimate
for a wide range of image priors. They show that marginalizing
the sharp image and performing a MAP estimation on the
blur function alone can correctly estimate the blur kernel. The
marginalization of the sharp image is however computationally
challenging, and therefore various approximations are used
in practice [9], [19], [28]. Despite the theoretical analysis
of Levin et al. [27], many methods successfully use a joint
MAP estimation and achieve state of the art results [16], [33].
Recently, Perrone and Favaro [32] have clarified this apparent
inconsistency. They confirmed the results of Levin et al. [27]
and showed that particular implementation details make many
methods in the literature work and that they do not in practice
solve a joint MAP estimation.

The aforementioned deblurring methods assume uniform
blur across the image plane. Techniques exist that address non-
uniform blur due to rotational camera motion by introducing
additional dimensions in the motion blur PSF [20], [23],
[38], [45]. Hirsch et al. [21] propose an efficient imple-
mentation scheme wherein non-uniform blur can be modeled
through piece-wise uniform blurs while still retaining the
global camera motion constraint. Nonetheless, it has been
observed in [26] that in realistic scenarios, the performance
of algorithms that explicitly handle rotational motion are not
necessarily better than that of the methods that assume uniform
blur. Motion blur can also vary within an image because of
parallax in 3D scenes. Techniques proposed in [35] and [49]
address this problem when there are two observations available
and the camera motion is restricted to in-plane translations.
While in [31], a deblurring scheme which addresses non-
uniform blur for bilayer scenes using two blurred images
is proposed, Hu et al. address the problem with a single
observation [22]. Other methods attempt to solve general
space-varying motion deblurring by estimating locally uniform
blur and carefully interpolate them to cope with regions
having poor texture [24], or by iteratively employing uniform
deblurring and segmentation algorithms [25].

B. Light Field Capture
For a comprehensive discussion on light field acquisition,

processing and display, one can refer to the recent survey
in [47]. In this paper, we restrict our attention to microlens
array-based plenoptic cameras. The basic lenslet-based plenop-
tic camera was first developed by Adelson and Wang for
inferring scene depth from a single snapshot [8]. The portable
design by Ng et al. with the use of microlens arrays trig-
gered the development of handheld light field cameras [30].
The main drawback of image reconstruction in this camera
was its limited spatial resolution. To overcome this problem,
Lumsdaine and Georgiev designed the focused plenoptic cam-
era wherein the microlenses were focused at the image plane of
the main lens, thereby enabling rendering at higher resolution
for certain depths [29]. Perwaß and Wietzke proposed a further
modification in the design which included microlens arrays
with microlenses having different focal lengths [34]. Recently,
Wei et al. proposed to introduce irregularity in the lens design
to achieve better sampling of light fields [44].

C. Calibration, Depth Estimation and Super-Resolution
Since plenoptic images suffer from loss of spatial resolu-

tion, various algorithms have been proposed to super-resolve
scene texture. In [29], the authors propose to render high
resolution texture directly from light field data by projecting
the LF image onto a grid at higher resolution than the
number of microlenses. In [11], Bishop and Favaro model
the image formation through geometric optics and propose a
PSF-based model to relate the LF image and high resolution
scene texture along with the camera parameters and scene
depth. They propose a two-step procedure to estimate the
scene depth map using view correspondences and thence the
high resolution texture. Wanner and Goldlücke propose a
technique to accurately estimate disparity using an epipolar
image representation and then super-resolve 4D light fields in
both spatial and angular directions [43]. Broxton et al. propose
a 3D-deconvolution method to reconstruct a high resolution
3D volume using a PSF-based model with applications to
light field microscopy [12]. We also found out that this
work suggests a fast computational scheme that might be
similar to the one proposed here. However, due to lack of
details (a very short explanation is given in a paragraph
in [12, Sec. 3.4]) we cannot verify this. However, even in the
presence of a similarity, our and this scheme were developed
simultaneously [5]. Moreover, our scheme includes the case
of motion blur.

Recently, many works have been published that deal with
calibration, depth estimation and super-resolution [15], [17],
[39], [40]. These methods are capable of dealing with practical
issues in cameras such as noise, misalignments, vignetting etc.
During the review of this paper, a light field deblurring algo-
rithm was proposed by Srinivasan et al. [36]. They consider
that the camera undergoes 3D translations and solve for camera
motion and the sharp light field from a blurry light field
image. They show that the estimation of scene geometry is
not necessary for deblurring. The main difference between
their paper and our work is that we aim to recover the
high-resolution scene texture while they attempt to deblur the
4D light field function. The spatial resolution of the recovered
light field in [36] corresponds to microlens resolution, which
is very much coarser when compared to the texture that we
recover in this paper. The difference in resolution is apparent
in an example shown in Fig. 5.

Contributions: The contributions of our work can be sum-
marized as: i) We introduce the problem of motion deblurring
of light field images from a plenoptic camera and provide the
first solution to it. ii) We propose a computationally and mem-
ory efficient imaging model for motion blurred LF images.
iii) We will make publicly available a GPU implementation
for recovering scene texture from light fields. iv) We solve
a joint blind deconvolution and super resolution problem.
v) We handle radial distortion correction and alignment within
our energy minimization framework.

III. IMAGING MODEL

In this section, we introduce notation and the image for-
mation model for a motion blurred light field image. Initially,
we describe the plenoptic image formation for constant depth
scenario. We propose two approaches for fast implementation
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Fig. 1. LF image formation: (a) Projection of scene texture to conjugate
plane. (b) LF image formation at the sensors through the microlens array.

of the imaging model. Finally, we describe our model to
represent non-uniform motion blurred scenes consisting of
different depth layers.

A. Plenoptic Image Formation
Figs. 1 (a) and (b) explain the image formation process in

a plenoptic camera. Consider a scene with depth value d and
scene texture denoted by gd . Following [11], we consider gd to
be defined on the microlens array plane as shown in Fig. 1 (a).
Note that defining the texture on the microlens plane is only
a convention, and the texture could be defined on any other
plane perpendicular to the optical axis. According to the thin
lens model, due to the camera main lens, the scene is imaged
at the conjugate plane inside the camera at a distance d ′ from
the main lens. This is subsequently imaged by the microlens
arrays resulting in the light field image ld on the sensor plane.

Let p denote the coordinates of a point on the microlens
array and x denote a pixel location on the sensor plane.
We have p = [p1 p2]T , and x = [x1 x2]T , where p1, p2, x1, x2
are integers. A pixel of the LF image ld(x) is related to texture
elements gd(p) through a space-varying PSF h(x, p) as

ld (x) =
∑

p

hd(x, p)gd(p) (1)

The PSF hd depends on the depth value d and the parameters
of the plenoptic camera. An explicit formula is also avail-
able in [11] and [12] and efficient code to implement it is
available on our website.1 Using the vectorial notation for the
LF image ld and the texture gd , we can write the imaging
model as

ld = Hdgd (2)

where Hd is a (typically very large) sparse matrix.

B. Efficient LF Image Generation
A direct implementation of eq. (1) is practically very

challenging due to the memory and computation requirements.
For instance, if the scene texture and the light field image were
of the order of mega pixels, the number of elements necessary
to store Hd would be of the order of 1012. Although Hd is
sparse, performing the sum and product calculation in eq. (1)
would still be computationally intensive. We address these
shortcomings by exploiting the structure of LF PSFs due to the
periodicity of the microlens array lattice. We show two ways

1http://www.cvg.unibe.ch/research/PlenopticDeblurring

Fig. 2. Real images of point light sources from Lytro Illum camera: A point
light source moves left and down in Figs. (a) to (c).

to arrive at exact and efficient implementations of LF image
generation that are highly parallelizable: first, via parallel con-
volutions and second, through sparse matrix-vector products.

We first provide an intuitive explanation of the key idea
that we exploit. Then, we present it formally. Fig. 2 (a) shows
an image captured by a Lytro Illum camera when a green
colored point light source was placed in front of the camera.
To better visualize the periodicity we synthetically overlaid
the hexagonal microlens array structure and set gaps between
microlenses to black. Small diagonal translations of the light
source yield images as in Figs. 2 (b) and (c). Notice that the
image in Fig. 2 (c), is identical to that in Fig. 2 (a) except for
a translation of one microlens. Similarly, for every position
of the point light source, there exist corresponding positions
(on a discrete lattice) at which we observe repeated patterns.

To formalize this periodicity, we need to introduce some
basic notation. First, for simplicity, we consider a rectangular
microlens arrangement. The same formulation holds also for
hexagonal arrangements as shown in sec. III-C. Suppose there
are J×J pixels under each microlens in the sensor plane.
A pixel location x can be written as x = kJ + j, where
j = [ j1 j2], j1, j2 ∈ [0, . . . , J − 1], and k = [k1 k2], where
k1 and k2 are integers specifying the microlens under which
x falls. It should be noted that, while all those pixels with
the same j correspond to a view or a sub-aperture image
(an image from one camera in a camera array), those with the
same k correspond to the image within a single microlens.
We decompose the coordinates of texture p on the microlens
plane in a similar fashion. If two microlenses are D units
apart, then we write p = bD + t, where t = [t1 t2],
t1, t2 ∈ [0, . . . , D − 1], and b = [b1 b2], where b1 and b2
specify the microlens coordinates. Note that D specifies the
resolution at which the scene texture is defined. A larger value
of D defines texture on a finer grid, and, vice versa, a smaller
value a coarser grid.

Now consider two points p and q located in different
microlenses in such a way that their relative position with
respect to the microlens center is the same (i.e., both have the
same value of t). Then, the PSFs hd (x, p) and hd (x, q) will be
shifted versions of each another. Technically, this is because
the PSF of the light field image is given by the intersections
of the blur discs of the main lens and the microlens array [11].
If there is a shift in the position of the point light source that
exactly corresponds to an integer times the microlens diameter,
then the resulting intersection pattern will be identical to the
original intersection pattern, but with a shift because of the
regularity of the microlens array as seen in Fig. 2. Hence,

hd (x, p) = hd (x − Jy, p − Dy) (3)
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for any y, where y = [y1 y2], y1 and y2 are integers. Based
on this periodicity, we develop two approaches for efficient
LF image generation.

1) Convolution-Based Scheme: The first observation is that
the components of the PSF hd can be completely described by
eq. (3) with J 2 × D2 kernels. Secondly, the spatial spread of
every kernel will be limited because of the limited extent of the
main lens blur disc. Thus, we have obtained a memory efficient
representation of the PSF hd . By replacing p by bD + t in
eq. (1), and using eq. (3) we get

ld(x) =
∑

t

∑

b

hd(x − bJ, t)gd(bD + t) (4)

Then, by expressing x as x = kJ + j, we get

ld (kJ + j) =
∑

t

∑

b

hd(kJ + j − bJ, t)gd (bD + t) (5)

Let ĝd(b, t)
.= gd(bD + t), l̂d (k, j)

.= ld(kJ + j) and
ĥdj(k, t)

.= hd (kJ + j, t) (i.e., just a rearrangement). Then,
for every value of j, we have

l̂d (k, j) =
∑

t

∑

b

hd ((k − b)J + j, t) ĝd(b, t) (6)

and finally

l̂d (k, j) =
∑

t

∑

b

ĥdj (k − b, t) ĝd(b, t)

=
∑

t

(
ĥdj (·, t) ∗ ĝd (·, t)

)
(k) (7)

where ∗ denotes the convolution operation. Eq. (7) indicates
that we can arrive at the LF image by performing convolutions
for every possible value of t and j. Note that these convolutions
are completely independent and therefore can be executed in
parallel. Also, we need only J 2 × D2 PSFs that are denoted
by ĥdj (·, t) for the LF image generation.

2) Sparse Matrix-Based Scheme: The periodicity in eq. (3)
can also be written as

hd (x + Jy, p) = hd (x, p − Dy). (8)

By setting x as x = kJ + j and using eqs. (1) and (8), we get

ld(kJ + j) =
∑

p

hd(j, p − kD)gd (p). (9)

Let l̂d(k, j)
.= ld(kJ + j) and p′ .= p − kD. Then we have,

l̂d(k, j) =
∑

p′
hd (j, p′)gd(p′ + kD). (10)

An efficient implementation of LF generation can be obtained
from eq. (10). The term

∑
p′ hd (j, p′) denotes summing over

a particular row of the basic PSF matrix Hd (eq. (2)). Every
row of the matrix Hd is quite sparse since a pixel in a light
field image is related to only a small number of elements of the
scene texture. Consequently, a sparse matrix consisting of only
J×J sparse rows, corresponding to all possible values of j, is
sufficient to represent the PSF to render one microlens. The
image within a single microlens (i.e., l̂d(k, j) for a particular k)
can be obtained through the product of this sparse matrix
with the texture elements gd . For images corresponding to

Fig. 3. Hexagonal arrangement of microlenses. Notice that the lattice is
periodic with minimal period defined by the red tile.

other microlenses, one needs to apply only a translational shift
gd(p′ + kD) as seen in eq. (10). All these operations can be
performed in parallel.

C. Hexagonal Arrangement

In consumer plenoptic cameras, the microlenses are
arranged on a hexagonal grid. Fig. 3 (a) shows an ideal
hexagonal arrangement of the microlenses. The basis for our
implementation schemes was that the intersection pattern of
the main lens blur disc and the microlens blur disc repeats
periodically as we traverse the microlens array plane. One
can observe that the periodicity property holds when taking
horizontal or vertical steps of Q and Q′ pixels respectively,
which match the dimensions of the red-shaded rectangular
region in Fig. 3 (a). Similarly, as discussed in sec. III-B, in
the case of microlens arrays with a rectangular arrangement,
the smallest periodic step corresponds to one microlens with
J×J pixels. We define the scene texture analogously.
We consider that on the microlens array plane there are P×P ′
units per block in the hexagonal arrangement case and D×D
units in the rectangular case. This implicitly defines the view
index j = [ j1 j2], j1 ∈ [0, . . . , Q′−1], and j2 ∈ [0, . . . , Q−1],
and similarly, t = [t1 t2], t1 ∈ [0, . . . , P ′ − 1], and t2 ∈
[0, . . . , P −1]. With these changes, based on our discussion in
sec. III-B, one can see that the LF image generation model in
eq. (1) can be implemented using either the convolution-based
approach given in eq. (7) or the sparse matrix product-based
scheme in eq. (10) even in the hexagonal arrangement case.

D. Motion Blur Model

A relative motion between the camera and the scene during
the exposure interval causes the light field image to be motion
blurred. In a general 3D scene, the averaging of a scene
point at the camera image plane depends on the scene depth
value. Consequently, image points corresponding to different
depth values should be modeled separately. Let �d denote the
support of a layer in the texture domain with depth d , i.e.,
points p ∈ �d have the same depth. For each depth layer,
we assume the scene texture gd to be a blurry instance of the
latent sharp image fd . The subscript d indicates that the values
of fd (p) and gd(p) are valid only when p ∈ �d . Following
the works in [18], [20], [23], and [31], we consider blurring
due to in-plane camera rotations and translations.
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As derived in [18], the camera rotations and translations
result in 2D transformations of the sharp image. Let gd and
fd denote the vectorized forms of gd and fd , respectively. The
blur degradation can be represented in two equivalent ways:
either as a sum of rotated and then filtered instances of the
sharp texture, or as a linear combination of shifted and rotated
textures

gd =
∑

θ∈�

Bθ Rθ fd =
∑

θ∈�

Fdθ βθ (11)

θ denotes the angle of rotation within a set of angles �,
Rθ denotes the 2D warping matrix corresponding to the
angle θ , Fdθ denotes a matrix whose columns consist of differ-
ent shifted instances of the rotated sharp scene texture Rθ fd ,
and Bθ is the matrix equivalent to performing a 2D convolution
with the motion blur kernel βθ . We also have the constraint
that

∑
θ ‖βθ‖1 = 1. The model described in eq. (11) is

similar to the slice-based generalized additive convolution
model described in [18].

We relate the light field image ld and the sharp image fd

through a depth-dependent LF PSF and a motion PSF, sepa-
rately for each layer support �d . Note that this model does not
capture occlusion effects at depth discontinuities. We consider
that to be beyond the scope of our paper.

IV. PLENOPTIC MOTION DEBLURRING

In this section, we describe our methodology to recover a
sharp scene texture from a blurry light field image. In our
first step, for every depth layer, we recover the blurry scene
texture gd from the light field observation. We use this
blurry texture to determine the motion blur PSF through non-
uniform blind deconvolution. Finally, we determine the sharp
scene texture for every layer through an energy minimization
framework.

A. Texture Recovery

Given a light field observation, we initially determine the
scene depth map. In our experiments, we use the software from
Lytro to obtain the depth map. One could use any other depth
estimation scheme as well. We apply the k-means clustering
algorithm on the depth map to segment it into Nd clusters.
The number of clusters is set by the user although we found
2−3 layers to suffice in most cases. As an example, for the raw
image captured from a Lytro Illum camera shown in Fig. 4 (a),
the depth map (top of Fig. 4 (b)) was segmented into two layers
�1 and �2 as shown in Fig. 4 (b) (bottom).

For each depth layer, we evaluate the entries of the LF PSF
using the depth value and camera parameters. We then deter-
mine the texture gd from the LF observation by restricting the
spatial support according to �d . We minimize the following
objective function through gradient descent

arg min
gd

1

2
‖Hdgd − ld‖2

2 + λ‖gd‖T V (12)

where ‖gd‖T V
.= ∑

p ‖∇gd(p)‖2, with ∇gd
.= [gdx gdy ]T ,

denotes the isotropic total variation of the scene texture [10],
[13], and λ > 0 regulates the amount of total variation.

Fig. 4. (a) Raw image (zoom in to see the microlens structure). (b) The depth
map shown in the top was segmented into two layers �1 and �2 below.

The gradient expression with respect to the data term
Edata is given by

Edata := 1

2
‖Hdgd − ld‖2

2 ,
∂ Edata

∂gd
= H T

d (Hdgd −ld) (13)

The transpose operation H T
d can be efficiently implemented

in an manner analogous to the forward operation described
in eqs. (7) and (10). In our final implementation, we use the
matrix-vector product version of eq. (10) because accelerated
functions for GPUs that perform sparse matrix-vector product
are easily available [4]. The gradient with respect to the
TV prior is given by the term −∇ · ∇gd

‖∇gd‖ . This involves evalu-
ating finite differences and other point-wise arithmetic opera-
tions, which can also be implemented on a GPU. We describe
the practical details and compare the runtimes of CPU and
GPU implementations of the convolution-based and matrix-
vector product schemes in sec. V.

For the LF image shown in Fig. 4 (a), we obtain the texture
for both layers at one-fourth the full resolution. Both the tex-
tures were merged according to the support of each layer �d .
The resultant image is shown in Fig. 5 (b). The all-in-focus
image rendered by the Lytro software is shown in Fig. 5 (c).
To illustrate the extent of aliasing in the sub-aperture views,
we show the central view in Fig. 5 (a) (rendered using the
toolbox in [6]). Note that the central view is highly aliased as
compared to our rendering and Lytro software’s rendering.

B. Motion Blur Estimation

We estimate the motion blur PSF by using the blur degrada-
tion models from eq. (11) in the following objective function

arg min
fd ,βθ

1

2

∥∥∥∥∥
∑

θ

Bθ Rθ fd − gd

∥∥∥∥∥

2

2

+ λ‖fd‖T V

subject to βθ � 0,
∑

θ

‖βθ‖1 = 1. (14)

We follow an approach similar to the projected alternating
minimization (PAM) algorithm of [32]. At each iteration, we
first update the current estimate of the sharp image fd through
a gradient descent iteration. The gradient with respect to the
data term in eq. (14), which we denote again as Edata, yields

∂ Edata

∂fd
=

∑

θ

RT
θ BT

θ

(
∑

θ

Bθ Rθ fd − gd

)
(15)
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Fig. 5. Texture recovery from a light field observation: (a) Central view. (b) Our GPU implementation (no affine warping nor radial distortion correction
in the objective function) with resolution defined by P = 4 and P ′ = 7. (c) All-in-focus image rendered by Lytro Desktop software. Reconstructed texture
through realistic camera model with TV regularization λ = 2·10−6 and texture resolution defined as (d) P = 4 and P ′ = 7, (e) P = 1 and P ′ = 2, (f) P = 2
and P ′ = 4, and (g) P = 3 and P ′ = 6. (h) Recovered texture with λ = 2·10−4 and P = 4 and P ′ = 7.

Subsequently, we update the motion blur PSF represented
by βθ for all possible values of θ . The gradient of the data
term with respect to each βθ is given by

∂ Edata

∂βθ
= FT

dθ

(
∑

θ

Fdθ βθ − gd

)
. (16)

After the gradient update, we threshold negative values and
apply a constant scaling for all values of βθ so that βθ � 0
and

∑
θ ‖βθ‖1 = 1. For each depth layer d , the blind

deconvolution is performed only at pixels corresponding to
the layer support �d . To estimate an accurate motion PSF, we
reduce the possibility of including pixels from other layers by
shrinking the support of �d . This eliminates outliers due to
depth discontinuities and errors in the estimated depth map.

Note that one could have also estimated motion blur
directly from the light field image ld with the data term∥∥Hd

∑
θ Bθ Rθ fd − ld

∥∥2
2. However, we observed that in such

a scenario, the convergence would be much slower and would
also involve significantly more computations.

C. Sharp Texture Recovery

Once the motion blur PSF for each layer is known, one
could deblur gd to estimate the sharp scene texture. However,
to improve reconstruction accuracy, we recover the scene
texture directly from the light field observation rather than
from the blurry texture gd . According to our model, we can
estimate fd for each layer by solving

arg min
fd

1

2
‖Hd Bfd − ld‖2

2 + λ‖fd‖T V . (17)

Fig. 6. Cropped white plenoptic image illustrating (a) misalignments,
and (b) vignetting.

We define the motion blurring matrix B as B = ∑
θ Bθ Rθ

to simplify the notation. Finally, we modify our objective
function to incorporate practical imaging aspects such as
misalignments and radial distortion.

In real cameras the microlens array is not necessarily
aligned with respect to the CCD sensor plane. This effect is
apparent in Fig. 6 (a) which shows a crop of size 50 × 7728
pixels from a raw white image captured with the Lytro
Illum camera. In Fig. 6 (a), the gap between adjacent rows
of microlenses is tilted instead of being strictly horizontal.
Furthermore, in real plenoptic images the distance between
adjacent microlens centers in terms of pixels need not be an
integer. Hence, we need to apply an affine mapping which
would align the raw image to a regular grid model as shown in
Fig. 3 with both Q and Q′ as integers. We introduce a warping
matrix W that aligns the LF image Hdgd to the captured raw
image. The affine transformation remains fixed for a camera
and typically its parameters are stored as metadata [6].
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Fig. 7. Example images from the synthetic experiment. First column: motion blurred texture from the dataset of [26], second column: corresponding
LF images, third column: two-step results along with estimated PSF, fourth column: results of the proposed unified deblurring, and fifth column: true
texture.

Fig. 8. Depth and texture estimation from real motion blurred light field
images: recovered texture (left) and depth map above the layer segmentation
(right).

At microlenses close to the corners of the plenoptic image
we observe optical vignetting. This is because light rays
entering the main lens at extreme angles hit surfaces inside the
camera before reaching the sensor. Fig. 6 (b) shows an example
of the vignetting effect on LF images. It contains a region
cropped at the top left corner of a white plenoptic image. The
image pixels under the influence of vignetting do not follow
our image formation model. Hence, to avoid using the affected

pixels, we use a mask M generated by thresholding a white
image. The entries of the mask M will be zero at pixels that are
affected by vignetting and one at other locations. Moreover,
certain pixels in the sensor array always produce saturated
intensities (hot pixels). We detect these pixels by imaging a
dark scene and include them in the mask. We also mask the
edge pixels of every microlens since they suffer from noise
due to demosaicing [17].

Yet one more effect in real cameras is that of radial
distortion. In the raw image shown in Fig. 4 (a), we can
clearly observe barrel distortion (see, for example, the edges of
the posters in the background). To account for this distortion,
we define a transformation C , which radially distorts the
motion blurred scene texture. For our experiments, we use
the calibration technique available in [3] to determine the
distortion parameters of our camera. By considering the effect
of affine warping, masking and radial distortion, the modified
objective function can be written as

arg min
fd

1

2
‖M� (W HdC Bfd − ld )‖2

2 + λ‖fd‖T V (18)

where � denotes the Hadamard product (point-wise multipli-
cation). The sharp scene texture for each layer is separately
obtained via gradient descent. Finally, we merge these textures
based on the support of each layer.

In our GPU implementation of the sharp texture recovery
in sec. (IV-A), we did not include affine warping and radial
distortion correction within the objective function. Affine
correction was applied on the light field image to obtain an
aligned light field image. This aligned image was used to
recover the scene texture. Distortion correction was applied
only once after recovering the scene texture. To highlight the
importance of accounting for these changes, from the raw
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Fig. 9. Deblurring results on the image of boxes in a supermarket with the PSFs shown in the insets.

Fig. 10. Deblurring results on the image of slanted posters with the PSFs shown in the insets.

image of Fig. 4 (a), we estimated the scene texture according to
the objective function in eq. (18) (without considering motion
blur). In the resulting image shown in Fig. 5 (d), the text

is more clearly readable than the Lytro rendered image in
Fig. 5 (c) and our GPU-based result in Fig. 5 (b). Note that
both Figs. 5 (b) and (d) were obtained at the same resolution
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Fig. 11. Deblurring results on the image of a street and post with the PSFs shown in the insets.

while Fig. 5 (c) was rendered at a resolution close to our
results.

D. Implementation Details

We discuss the implementation details such as super-
resolution factor, noise and computational aspects of non-
uniform blind deconvolution.

1) Super-Resolution Factor: The number of texture ele-
ments per microlens (denoted by D on rectangular grids and by
P and P ′ on hexagonal grids) define the super-resolution fac-
tor. This factor defines both the resolution of the latent scene
texture and that of the LF PSF hd . In Figs. 5 (e), (f) and (g),
we show the reconstructed texture for the resolution factors
P = 1, P = 2, and P = 3, respectively. As the resolution
factor increases, we see that the reconstructed texture tends
to show more and more details. We also estimated texture
for the factor P = 5 and P ′ = 9. However, we observed
no improvement in the resolution quality with respect to the
factor P = 4 and P ′ = 7 (Fig. 5 (d)). This is due to the
inherent limit of the LF camera [11]. Therefore, in all our real
experiments we reconstruct texture with resolution parameters
P = 4 and P ′ = 7.

2) Noise: The raw images from commercially available
LF cameras contain significant levels of noise [39], [40], [46].
Consequently, if the regularization is low, our reconstruction
can lead to minor noise artifacts as seen in Fig. 5 (d).
The effect of noise can be overcome by using a larger
regularization value. In Fig. 5 (g), we set the regularization

value to be λ = 2 · 10−4 and do not observe noise artifacts.
In all our real experiments, we set λ = 2 · 10−4 for texture
recovery.

3) Non-Uniform Blind Deconvolution: For the successful
convergence of blind deconvolution, we follow the commonly
used strategy of multiscale implementation. Initially, both the
3D blur kernel and the image are represented in a coarse
resolution. After a set of iterations of the PAM algorithm the
image and blur kernel are upsampled to a finer resolution.

We select the set of angles � to be a uniformly sampled
set centered around zero degrees. Following [45], the sample
spacing is chosen such that it corresponds to a displacement
close to one pixel at the farthest point from the center of
rotation. For a typical choice of range [−2◦ 2◦] and spacing
of 0.12◦, � would contain about 35 elements. In practice,
only a small subset of these angles would be contributing
to motion blur. Considering the whole set of � would be
computationally quite intensive as well. Hence, we restrict the
number of angles in � by defining a support [45]. At the
coarsest level, the support includes the entire range of angles
in �. At the finer scales, the support is determined by ignoring
angles with negligible weights. Similar to the strategy in [45],
we update the support at each scale after upsampling the
3D blur kernel.

V. EXPERIMENTAL RESULTS

We evaluate our light field blind deconvolution algorithm on
several synthetic and real experiments. For synthetic experi-
ments, we use the images of the standard dataset [26] which
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Fig. 12. Deblurring results on the image of two persons with the PSFs shown in the insets.

contains non-uniform motion blurred images. From the motion
blurred images, we generate the corresponding motion blurred
light field data according to the PSF model. We perform real
experiments with data captured from a handheld Lytro Illum
camera. We use a fixed set of values for the camera parameters
in synthetic as well as real experiments. These values are
specified in the supplementary material.

A. Synthetic Experiments

The dataset in [26] consists of realistic motion blurred
images that were generated from a set of predefined camera
trajectories. These camera trajectories were recorded from real
camera motions. We consider each image of the dataset as
the blurry texture gd . For every image, we randomly select
a depth value ranging from 60 cm to 3 meters, and generate
an LF image. For the sake of comparison, we estimate the
sharp texture with two different approaches. Both share the
same initial processing: First, the motion blurred texture gd is
recovered from the LF image (see sec. IV-B), and then, through
blind deconvolution of gd , we estimate the motion PSF. With
this motion PSF, in one approach we estimate the sharp image
fd from the observation gd by minimizing the data term∥∥∑

θ Bθ Rθ fd − gd
∥∥2

2 along with TV prior. This approach is
referred to as two-step method. In the other approach,
we use the same motion PSF to estimate the sharp texture
directly from the light field observation ld as in eq. (17), and
we call it the unified approach. In both approaches the

TABLE I

COMPARISON BETWEEN DIFFERENT DEBLURRING APPROACHES

values of the TV regularization parameters were the same.
The regularization weight was set as λ = 2 · 10−6 for texture
recovery, λ = 1.5 · 10−3 for the alternating minimization
scheme, and as λ = 2 · 10−5 to perform the final deblurring.

In our LF PSF based model we cannot reconstruct the entire
texture from an LF image due to boundary effects. There are
twelve different blur kernels in the dataset of [26]. We consider
only seven of these blur kernels (numbered from 1 to 7 in
the dataset) by excluding the ones with high spatial extent.
We tested our algorithm on three different textures. Out of the
21 different scenes, three representative examples are shown
in Fig. 7. The results on all the 21 scenes are shown in the
supplementary material for visual evaluation. We evaluated the
performance through Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index (SSIM) [42] metrics using the
ground truth images provided by Köhler et al. [26]. In Table I,
we show the mean and standard deviation of the PSNR and
SSIM metrics. The proposed unified method outperforms
the two-step method. Note that, our PSNR values cannot
be compared with that of conventional image deblurring since
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the input to our algorithm is a light field image in which the
scene texture undergoes inherent aliasing and defocusing.

B. Real Experiments

We perform real experiments using images of motion
blurred scenes captured with a Lytro Illum camera. To read
images from the Lytro Illum camera, we use the Light Field
Toolbox V0.4 software [6] developed by Dansereau et al. [17].
We first normalize the intensity of the raw image by using
the white image stored in the LF camera. We capture motion
blurred observations of four different real scenes from a
handheld camera. In addition to blurred observations, we
also capture a separate sharp observation for a direct visual
evaluation of our result. In all our experiments, the scene
depth ranges between 60cm to a few meters and beyond.
In all images we use the same camera settings. Even for
obtaining the vignetting mask, we use the stored white image
of the camera. After demosaicing the raw white image, the
mask M was obtained by considering the pixel locations
greater than the threshold value of 0.5 in all the three color
channels.

GPU Based Texture Recovery: The Lytro Illum camera has
about 432×540 microlenses and the raw image has about
15 pixels per microlens. We define a regular hexagonal grid
with Q = 16 and Q′ = 28 (sec. III-C) and apply an affine
mapping on the raw LF image to align it to the microlens
array structure. The scene texture is defined on a grid with
P = 5 and P ′ = 9, which corresponds to about one-third of
the full sensor resolution. We implement the texture recovery
scheme discussed in sec. IV-A on an Nvidia K20 GPU. The
execution time of one gradient descent iteration is about
0.25ms per layer for a single color channel. The algorithm
easily converges in about 100 iterations even with an arbitrary
initial estimate. When we implement the same task on an
Intel(R) Xeon(R) core CPU, through the convolution-based
scheme of eq. (7), the execution time is about 6.5 seconds
per iteration of gradient descent. After texture estimation, we
correct for the radial distortion and downsample to a texture
grid with P = 4, and P ′ = 7. The downsampling operation
helps to reduce warping artifacts. The depth maps rendered
by Lytro Desktop software, their segmentation, and texture
estimation results for three out of four images of our dataset
are shown in Fig. 8. The other image we use to test our
algorithm is a motion blurred instance of the scene that we
show in Fig. 4. For brevity, we avoid repeating a similar depth
map and layer segmentation.

We estimate the motion PSF of each layer from the
recovered textures (sec. IV-B). Subsequently, the sharp tex-
tures are estimated through non-blind deblurring (sec. IV-C).
Finally, the layers are merged and color correction is applied
by considering Lytro’s rendering as the reference. We compare
the performance of the proposed algorithm with other con-
ventional image blind deblurring techniques. These techniques
are applied to the all-in-focus image generated by the Lytro
Desktop software. This comparison is not entirely fair, because
our scheme effectively makes use of the depth map while
the conventional deblurring schemes are not able to use

this information. We compare our method with the schemes
in [16], [45], and [50] since these techniques are known to
work well even for non-uniform motion blur [26]. For the
method in [50] we use the publicly available Matlab executable
that also handles non-uniform motion blur [7].

The results are shown in Figs. 9-12. In all the examples,
our method consistently renders a sharp estimate. The outputs
from other techniques do achieve deblurring either in some
specific regions or for a particular scene. However, on the
whole, they fail to achieve deblurring due to factors such as
depth changes and loss of information in the Lytro rendered
image. In some cases, our results produce some artifacts due
to inaccurate depth estimates. However, in most of the cases
the results are artifact-free even at object boundaries.

VI. CONCLUSIONS

We have presented the first motion deblurring method
for plenoptic cameras. Our method extends classical blind
deconvolution methods to light field cameras by modeling
the interaction of motion blur and plenoptic point spread
functions. Moreover, our model is highly parallelizable and
memory efficient. By following an alternating minimization
procedure, we determine the unknown non-uniform motion
blur. We estimate the sharp and super resolved texture by
considering practical issues of alignment and radial distortion.
Experiments show that our method successfully deals with
non-uniform motion blur, and outperforms approaches based
on conventional blind deconvolution.

A drawback is that our method is not applicable to scenes
with continuous depth variations. Jointly handling motion blur,
aliasing and defocusing effects of an LF camera, and depth
variations will be left to future work. Our method can be
considered as a stepping stone towards this direction.
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