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Abstract

In images and videos of a 3D scene, blur due to camera
shake can be a source of depth information. Our objective
is to find the shape of the scene from its motion-blurred ob-
servations without having to restore the original image. In
this paper, we pose depth recovery as a recursive state esti-
mation problem. We show that the relationship between the
observation and the scale factor of the motion-blur kernel
associated with the depth at a point is nonlinear and pro-
pose the use of the unscented Kalman filter for state estima-
tion. The performance of the proposed method is evaluated
on many examples.

1. Introduction
Motion-blur is a commonly observed phenomena and

occurs due to relative motion between the camera and ob-
jects while capturing the scene. If the extent of blur is con-
stant at all points, it is referred to as space-invariant blur,
while it is called space-variant blur if it varies. In scenes
with depth variations, the amount of blur induced is related
to the 3D structure of the scene.

Traditionally, motion-blur is regarded as an undesirable
artifact in images and videos. A large number of approaches
that address the problem of deblurring exist in the litera-
ture. A motion-blurred image can be related to the original
reference image of the scene using a point spread function
(PSF). In [2], Ezra and Nayar propose the use of a hybrid
camera for estimating the PSF which is used for restoration.
This approach is extended in [18] to restore space-variantly
motion-blurred images and videos. Another approach for
the removal of motion-blur in videos is proposed in [1]. The
method uses video frames blurred with different exposure
times and having different PSFs to restore a frame.

Motion-blurred images have been used to estimate depth
information in [7] and [11] by determining the extent of
blurring. These methods assume that the scene can be
approximated by a set of planar patches. Depth estima-
tion from space-variantly blurred images is performed us-

ing variational methods in [5] and [15]. Favaro and Soatto
[5] consider scenes in which different objects move along
different directions. They estimate the motion field, depth-
map and the restored image from the motion-blurred obser-
vations which are captured with different exposure times.
The motion-blurred images are modeled as solutions of an
anisotropic diffusion equation. This model constrains the
shape of the PSF to be Gaussian. In real scenarios, the
shape of PSF can be arbitrary and the Gaussian model is ap-
propriate only when the extent of blur is small [15]. Sorel
and Flusser have proposed a technique to estimate the shape
and the restored image using two observations which are
blurred in different ways [15]. They consider the PSF to
be of arbitrary shape (due to non-uniform velocity of the
camera). In their method, the PSF is initially determined
from the blurred observations by choosing regions of con-
stant depth. With this PSF, an initial estimate of the depth-
map is obtained using a window-based technique. From this
initial estimate, the image and the depth-map are simulta-
neously estimated. The method requires many iterations to
converge.

We propose a recursive filtering framework for depth
estimation from motion-blurred images. The camera mo-
tion is considered to be in-plane translations, following the
work in [15]. Our method uses two blurred observations
of a scene captured in such a manner that one of the im-
ages can be treated to be a space-variantly blurred version
of the other. Such observations can be obtained from an
image sequence when the camera shake is lesser in one of
the frames as compared to that in other frames. These can
also be obtained by a hybrid camera which captures videos
at two different frame rates [18], or by time averaging im-
age sequences [5]. The proposed method is applicable even
when the camera translation is arbitrary and does not re-
quire the knowledge of camera calibration for determining
the shape of the scene.

The relative blur between the two observations is repre-
sented using a PSF which can be of arbitrary shape (due to
non-uniform camera motion). We relate the PSF and depth
at a point in the image using a parameter which we call as
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scale factor. The relationship between the pixel intensities
of the blurred image and the scale factor turns out to be non-
linear. The scale factor at each instant (pixel) is regarded as
the state which is determined from the observation using
an unscented Kalman filter (UKF) [8]. UKF is a recursive
state estimation technique which can handle even nonlinear
transformations. It has been applied in computer vision for
different problems such as image restoration [17] and track-
ing [20]. To preserve discontinuities in depth, we incorpo-
rate an edge-adaptive prior model for the state. The first
two moments of the prior distribution are estimated using
importance sampling [12]. Based on the blurred observa-
tion, the Bayesian estimate of the state is obtained at every
pixel using the UKF. The depth of the scene can be obtained
from this estimate of the scale factor.

Kalman filtering framework has been used in earlier
works to estimate depth from a sequence of images [13, 14].
To the best of our knowledge, this is the first work of its kind
that uses UKF for estimating depth from motion-blurred
observations. The proposed recursive implementation in-
volves a single pass across the image and does not require
any initial estimate. Another advantage of our scheme is in
terms of memory usage while implementing on hardware.
In the recursive filtering framework, computing depth at a
pixel requires data only from its neighboring pixels. Conse-
quently, the memory requirements for processing is less and
the technique can be readily implemented on DSPs which
have limited memory. In contrast, in iterative techniques,
image intensities and gradients corresponding to all of the
image pixels must be computed and stored while estimating
depth.

2. Blur model and problem formulation
In this section, we discuss the modeling of a motion-

blurred image. The shape of the PSF remains constant
across the image and the only variation it undergoes is scal-
ing. The extent of scaling at any point is related to the depth
of the scene.

Consider a 3D scene captured by a moving camera with
motion being restricted to in-plane translations. The veloc-
ity vector of the camera at time τ is denoted by T (τ) =
[Tx (τ) Ty (τ) 0]T with respect to the coordinate system
having origin at the optical center of the camera, the X and
Y axes parallel to the image plane, and the Z axis along the
optical axis of the camera. Let f denote the image of the
scene captured by a still camera. The velocity v at a point
(x, y) is given [4] as

v (x, y, τ) =
[
vx (x, y, τ)
vy (x, y, τ)

]
=

−ν
d (x, y)

[
Tx (τ)
Ty (τ)

]
(1)

where ν is the “focal length” of projection and d (x, y) is
the depth of the image point (x, y). This shows that the ve-
locity of points near to the camera will be higher than those

which are farther. The blurred image g is the average of
the light intensities experienced by the image sensors dur-
ing the exposure time. Consequently, in the blurred image,
the extent of smearing of a scene point nearer to the camera
is more than that for a point which is farther. Ignoring oc-
clusion effects, the blurred image is modeled [15] using the
space-variant PSF h (x, y, s, t) as

f ∗v h (x, y) =
∫ +∞

−∞

∫ +∞

−∞
f (x− s, y − t)h (x− s,

y − t; s, t) dsdt (2)

where ∗v denotes space-variant blurring operation. The
noisy blurred observation g can be written as

g (x, y) = f ∗v h (x, y) + e (x, y) (3)

where e () is the observation noise. Sorel and Flusser
[15] have shown that the shape of the PSF h (x, y, s, t) re-
mains the same throughout the image except for a scale fac-
tor which is related to depth. Consider a reference point
(ox, oy) with depth d (ox, oy) = do. If the PSF at (ox, oy)
is ho (ox, oy; s, t), then the PSF at any other point (x, y) is
a scaled version of ho (ox, oy; s, t) and is given by

h (x, y; s, t) = k2 (x, y)ho (ox, oy; sk (x, y) , tk (x, y)) (4)

where k (x, y) = d(x,y)
do

is a scale factor and represents the
relative depth with respect to the depth at the point (ox, oy).
Discretization of Eqns. (2) and (3) yields

f ∗vd
h (i, j) =

∑
m,n

f (i−m, j − n)h (i−m, j − n;m,n)

g (i, j) = f ∗vd
h (i, j) + e (i, j)

(5)

2.1. State estimation of scale

As mentioned in section 1, for depth estimation from
motion-blurred images, we use two observations g1 and g2

such that g2 can be obtained by space-variant blurring of g1.
i.e., we can write g2 (i, j) = g1 ∗vd

hr (i, j)+e (i, j). Here,
g1 is regarded as the reference image, g2 as the observation,
and the PSF hr denotes the relative blur.

The initial step of our algorithm is to estimate the shape
of the relative blur hr between the two observations. We
crop a small region of constant depth from the two im-
ages and estimate the blur between these regions. There
are many algorithms which can be used for PSF estima-
tion [6, 16, 19]. We employ an energy minimization ap-
proach for finding the PSF. It is not discussed in this paper
since our focus is on depth estimation. This blur kernel is
considered as the reference PSF hro (, ;m,n) from which
the relative blur at any other image point (i, j), denoted by
hr (i, j;m,n), can be obtained from its scale factor k (i, j)
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through Eqn. (4). In order to facilitate recursive state esti-
mation, we locally approximate the blurring model of Eqn.
(5) as

g2 (i, j) =
∑
m,n

g1 (i−m, j − n)hr (i, j;m,n) + e (i, j) (6)

where e () is assumed to be additive Gaussian noise with
zero mean and variance σ2

e . According to this model, the
blurred image intensity g2 (i, j) is dependent on the refer-
ence image g1, the reference kernel hro

(, ;m,n), and the
scale factor k (i, j). We address the problem of finding
k (i, j) with the knowledge of g1, g2 and hro . We formulate
it as a recursive state estimation problem with k (i, j) as the
state. The relationship between the state k (i, j) and the ob-
servation g2 (i, j) is nonlinear. For illustrating this nonlin-
earity, let us consider the reference kernel hro

(, ;m,n) as a
Gaussian with standard deviation σ. The PSF hr (i, j;m,n)
will be a Gaussian with standard deviation σ

k(i,j) . If k (i, j)
is multiplied by a constant ck, then the PSF hr (i, j;m,n)
will have standard deviation σ

ckk(i,j) . From Eqn. (6) we
see that, the change in the value of the scale factor does not
necessarily alter the value of g2 (i, j) to ckg2 (i, j). Hence,
the relationship between k (i, j) and g2 (i, j) is nonlinear.
For recursively estimating k (i, j) despite the nonlinearity,
we propose to use the unscented Kalman filter [8]. The
UKF avoids the problem of estimating the Jacobians of the
nonlinear relation which is necessary in other linearization-
based approaches.

The scale-map (k evaluated at all pixels) represents the
shape of the scene. The absolute value of depth d can be
obtained from k at all pixels if the depth is known at any
one image point.

3. Estimation of moments

The scale factor k (i, j) is considered as the state at pixel
(i, j). Its mean and covariance are denoted by µk(i,j) and
Pk(i,j), respectively. These moments are estimated based
on the blurred observation through the Kalman filter. For
the system model, we use a discontinuity adaptive Markov
random field (DAMRF) prior [10]. The use of a statistical
model is advantageous over a linear model since for a linear
model to work well, its coefficients must be known correctly
which is difficult in practice. Also, the DAMRF prior helps
in adapting the estimation process at the edges.

Kalman filtering requires propagation of mean and co-
variance of the state estimate through the system and obser-
vation models. We predict the first two moments of the state
distribution using importance sampling [12]. The mean and
covariance of the measurement is predicted by unscented
transformation [8]. We discuss these in the following sub-
sections.

3.1. Prediction of state moments

The previously estimated states are related to the
current state k (i, j) through a DAMRF prior with
a non-symmetric half-plane support (NSHP) as the
neighborhood system [17]. Let k̄i,j denote the first
order NSHP neighbors of k (i, j). i.e., k̄ (i, j) =
{k (i, j − 1) , k (i− 1, j − 1) , k (i− 1, j) , k (i− 1, j + 1)}.
The conditional pdf of k (i, j) takes the form

P
(
k (i, j) /k̄ (i, j)

)
=

1
Z

exp

(
−γ log

(
1 +

η2
(
k (i, j) , k̄ (i, j)

)
γ

))
(7)

where γ is a parameter of the discontinuity-adaptive model,
Z is a normalization constant, and

η2
(
k (i, j) , k̄ (i, j)

)
=

1
ρ2 (i, j)

∑
k∈k̄(i,j)

(k (i, j)− k)2 (8)

Parameter ρ2(i, j) controls the variations of k (i, j) with
respect to its neighbors. The mean µ̂p and variance σ̂2

p

of the conditional pdf correspond to the predicted mean
and covariance based on the previously estimated scale fac-
tors, and are denoted by µk(i,j)/(i,j−1) and Pk(i,j)/(i,j−1),
respectively. The conditional density function is non-
Gaussian and it is not straightforward to estimate its mean
and covariance. We employ importance sampling, a Monte
Carlo method [12] to estimate these moments. We follow a
procedure similar to the one given in [17] for implementing
importance sampling.

3.2. Unscented transformation

Unscented transformation (UT) is a deterministic sam-
pling approach which can be used to calculate the statistics
of a random variable that undergoes a nonlinear transfor-
mation [8]. Consider an nx dimensional random vector x.
Let F : <nx → <ny be a nonlinear function acting on x
i.e., y = F (x) ∈ <ny . Let x and Px denote the mean
and covariance of x, respectively. The statistical moments
of x are captured using 2nx + 1 samples or sigma points.
The moments of y can be evaluated from these samples and
weighting factors which are given by the following equa-
tions [9].

X0 = x; Xi = x + (
√

(nx + λ)Px)i, i = 1, .., nx
Xi = x− (

√
(nx + λ)Px)i, i = nx + 1, ...., 2nx;

w
(m)
0 =

λ

(nx + λ)
; w(c)

0 = w
(m)
0 + (1− α2

UT + βUT );

w
(m)
i = w

(c)
i =

1
2(nx + λ)

, i = 1, ...., 2nx;

where λ = α2
UT (nx + κ)− nx (9)
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where Xi denotes the ith sigma point, and w(c)
i and w(m)

i

denote its weights for evaluating mean and covariance, re-
spectively. Including X0, the number of sigma points is
2nx + 1. The term (

√
(nx + λ)Px)i is the ith column of

the matrix square root (
√

(nx + λ)Px)i [8].
The nonlinear mapping is applied on each Xi to get

Yi = F(Xi), i = 0, 1, ....., 2nx. The mean and covari-
ance of y are estimated as

y =
2nx∑
i=0

w
(m)
i Yi, Py =

2nx∑
i=0

w
(c)
i (Yi − y)(Yi − y)T (10)

The sigma points completely capture the distribution of x
up to the second moment. This results in the estimates of
the moments of y being accurate to the second-order of the
Taylor series expansion for any nonlinear function [8].

4. Recursive depth estimation
Initially, we estimate the reference PSF hro (, ;m,n). At

a pixel (i, j), the state mean µk(i,j)/(i,j−1) (denoted by µ̂p )
and covariance Pk(i,j)/(i,j−1) (σ̂2

p) are predicted using pre-
vious states as discussed in section 3. At the first pixel, the
previous states can be assigned to any arbitrary constant.
The observation and its covariance at (i, j) are predicted
from the observation model using predicted state mean and
covariance, hro

(, ;m,n), and g1 through UT. Based on the
observation g2, the estimates of the state are updated.

4.1. Observation model

Eqn. (6) relates the blurred image intensity g2 (i, j) to
the scale factor k (i, j). It can be used as the measurement
model for state estimation. However, for accurately esti-
mating the state k (i, j), in addition to g2 (i, j), we consider
the blurred intensities at some more points as the observa-
tion. The scale factor k (i, j) represents the PSF at (i, j)
and it affects those locations in the blurred image where the
scaled PSF has higher values. Consequently, the blurred
image at these locations contain information about k (i, j).
We scale the reference kernel hro

(, ;m,n) by a scale fac-
tor µk(i,j)/(i,j−1) and place it around (i, j). Depending
on where the peaks of this PSF occur, we pick no blurred
image pixels around (i, j) including g2 (i, j) and regard it
as the observation g (i, j). With the knowledge of g1 and
hro

(, ;m,n), the nonlinear relationship between the state
and the observation can be written as

g (i, j) = Hi,j (k (i, j)) + e (i, j) (11)

Typically, we choose no to be three or four pixels. When
there are color images, we consider that the state and in turn
the PSF at a point is the same for all channels. We stack the
blurred image pixels of all the three channels and regard it
as the observation g (i, j). Since the number of observa-
tions is more, state estimation can be done more accurately.

4.2. State update

Observation mean µg(i,j)/(i,j−1) and covariance
Pg(i,j)/(i,j−1) are predicted from the moments of the state
and the observation model using UT. We augment the state
k (i, j) with no independent observation noise terms to get
a no + 1 dimensional vector x on which UT is applied.
The sigma point selection scheme (Eqn. (9)) is applied as
follows:
xa(i,j)/(i,j−1) = [µ̂p 0.. ..0]T

Pa
(i,j)/(i,j−1) =


σ̂2
p 0. .. .0

0 σ2
e 0. .0

. . . .
0 0 0 σ2

e


Xa

(i,j)/(i,j−1) =
[
xa(i,j)/(i,j−1) xa(i,j)/(i,j−1)

±
√

(na + λ)Pa
(i,j)/(i,j−1)

]
for na = 1, ..no+1. Xa is the

augmented sigma point matrix. Let Xa = [(Xk) (Xe)]T .
where Xk and Xe contain the 2no + 3 sigma points of state
k (i, j) and measurement noise, respectively. We propagate
each of these sigma points through the measurement model
given in Eqn. (11) to obtain the sigma points of the obser-
vation, denoted by Y.

Yl = Hi,j

(
Xk
l

)
+ Xe

l , l = 1...2no + 3 (12)

i.e., at the pixel (i, j), for each sigma point, the reference
PSF hro (, ;m,n) is scaled by a factor Xl. The sigma
point of the observation Yl is obtained through the ob-
servation model using this scaled PSF and the intensity
values of the reference image g1. From the sigma points
Y and the weights, the statistics y and Py which cor-
respond to µg(i,j)/(i,j−1) and Pg(i,j)/(i,j−1), respectively,
are estimated by Eqn. (10). The state-measurement cross-
covariance Pxy is obtained using the relation

Pxy =
2no+3∑
l=0

w
(c)
l (Xk

l − µ̂p)(Yl − y)T (13)

Based on the observation g (i, j), the Bayesian estimate of
the state conditional mean and its covariance are obtained
from the Kalman filter update equations as

µk(i,j) = µk(i,j)/(i,j−1) + K(i,j)

(
g(i,j) − µg(i,j)/(i,j−1)

)
Pk(i,j) = Pk(i,j)/(i,j−1) −K(i,j)PyKT

(i,j) (14)

where the Kalman gain K(i,j) is given by K(i,j) =
PxyP−1

y . The updated mean µk(i,j) is regarded as the es-
timated scale factor k (i, j). In the next step, k (i, j + 1) is
predicted similarly and the covariance Pk(i,j) is used as the
parameter ρ2 (i, j + 1) in the prior.

5. Experimental results
For the purpose of validation, we tested the proposed

method on synthetic and real examples. We initially applied
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(a) (b)

(c) (d)
Figure 1. (a) Reference image. (b) Blurred observation. (c) Actual
scale-map (d) Estimated scale-map.

the proposed recursive filtering technique on synthetic data.
The calf leather image ([3]) shown in Fig. 1 (a) was used as
the reference frame. For this synthetic experiment, we as-
sumed a Gaussian form for the reference PSF. The blurred
image shown in Fig. 1 (b) was generated by space-variantly
blurring the original image by scaling the reference PSF ac-
cording to the depth-map shown in Fig. 1 (c). The esti-
mated depth-map from the proposed method is shown in
Fig. 1 (d). We evaluated the error in estimation ERR us-

ing the formula ERR =

√
Avg

[(
k̂
k − 1

)2
]

, where Avg []

denotes averaging, and k̂ and k denote the estimated and ac-
tual scale factors, respectively. The value of the estimation
error was found to be 0.015, which is quite small.

To test our algorithm on real data, we captured images
with a compact digital camera operating in manual mode.
The scene contained different objects at different depths.
The reference image shown in Fig. 2 (a) was captured when
the camera was stationary (although this is not a require-
ment). While capturing the blurred observation shown in
Fig. 2 (b), the camera was arbitrarily shaken in a plane dur-
ing the exposure time. The reference PSF estimated from a
small patch in the bottom left corner of the image is shown
in Fig. 2 (c). We see that the shape of the PSF which denotes
the camera motion during the exposure is non-Gaussian.
Fig. 2 (d) shows the estimated scale factors using the pro-
posed technique. Farther objects have a higher scale factor
and are represented by higher intensities. In Fig. 2 (d), we
observe that the shape is captured correctly even at the depth

(a) (b)

(c) (d)
Figure 2. (a) Reference image. (b) Blurred observation. (c) Esti-
mated PSF, and (d) Estimated structure.

discontinuities.
In our next experiment, both the reference image as well

as the observation were captured with a camera shake. The
reference image and the blurred observation are shown in
Figs. 3 (a) and (b), respectively. The PSF denoting the
relative blur between the two images was estimated from a
small region in the yellow clay model, and is shown in Fig.
3 (c). The scale factors estimated from the proposed UKF-
based technique is shown in Fig. 3 (d). In the scene, the yel-
low and the pink clay models were kept at the same distance
from the camera, and the model of the tree was kept behind
the two objects. In Fig. 3 (d), we see that the estimated scale
factors correctly reflect the scene. The scale factors in the
hole of yellow clay model correctly correspond to that of
the background. We measured the distance of the pink clay
model from the camera and obtained the complete depth-
map. A novel view rendering of the scene shown in Fig. 3
(e) correctly depicts the 3D structure.

We next tested our algorithm on images used by Sorel
and Flusser in [15]. We used the original image of the scene
(Fig. 4 (a)) as the reference image and one motion-blurred
observation (Fig. 4 (b)). The estimated PSF is shown in the
top left corner of Fig. 4 (b). The scale-map estimated by
the proposed algorithm is shown in Fig. 4 (c). Fig. 4 (d)
shows the scale factors reproduced from [15]. The conven-
tion adopted in [15] to indicate scale factors is opposite to
ours. i.e., dark intensities indicate farther objects. In Fig. 4
(d), we observe that the estimated scale factors do not depict
the depth correctly at a few places. For instance, on the car-
ton box which is near to the camera and is a planar surface,
we see a few dark patches which indicate a higher distance
from the camera. In the shape estimated by the proposed
algorithm (Fig. 4 (c)), we do not observe such errors. In
Fig. 4 (c), we see that the region corresponding to the car-
ton box is assigned darker intensities in the scale-map since
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(a) (b)

(c) (d)

(e)
Figure 3. (a) and (b) Blurred observations. (c) Estimated PSF. (d)
Scale-map, and (e) Novel view rendering of the scene.

it is near to the camera. Regions that are farther from the
camera result in a higher intensity, as expected. The depth
estimates are not as sharp as in the previous examples due to
lack of texture and poor illumination in the scene. It must
be mentioned that the algorithm in [15] uses two blurred
observations whereas we used the original image and one
blurred observation. This is because one of the two blurred
observations in this experiment was captured with horizon-
tal camera motion while the other was captured with a ver-
tical motion.

6. Conclusions

We proposed a new recursive filtering approach for es-
timating the shape of a 3D scene from its motion-blurred
observations. The shape of the scene is determined from ar-
bitrary camera translations without the knowledge of cam-
era calibration. The proposed framework involves compu-
tations only once across the image and requires less mem-
ory in the estimation process. As with other methods, our
algorithm requires textured images to achieve good perfor-
mance. Possible extensions of our work include considering
general camera and/or object motion, and handling occlu-
sions.

(a) (b)

(c) (d)
Figure 4. (a) Reference image. (b) Blurred observation and esti-
mated PSF. Estimated shape from (c) proposed UKF-based tech-
nique, and (d) algorithm in [15].
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