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Abstract. Knowledge of scene irradiance is necessary in many com-
puter vision algorithms. In this paper, we develop a technique to obtain
the high dynamic range (HDR) irradiance of a scene from a set of differ-
ently exposed images captured using a hand-held camera. Any incidental
motion induced by camera-shake can result in non-uniform motion blur.
This is particularly true for frames captured with high exposure dura-
tions. We model the motion blur using a transformation spread function
(TSF) that represents space-variant blurring as a weighted average of dif-
ferently transformed versions of the latent image. We initially estimate
the TSF of the blurred frames and then estimate the latent irradiance of
the scene.

1 Background

The irradiance from a real world scene incident on a camera could range from
very small to very large values. This variation is termed as the dynamic range.
However, the CCD/CMOS sensors used in today’s cameras are unable to accom-
modate the entire range. Over the past decade, this limitation has increasingly
drawn the attention of vision researchers for applications in computer graphics,
visual effect production etc. [1]. A widely followed approach for inferring scene
irradiance is to optimally combine information from multiple images captured
with different exposure times [2-6]. The focus in these methods is on modeling
the camera pipeline and estimating the camera response function (CRF) to find
the high dynamic irradiance of the scene. Another approach for HDR imaging
is based on image fusion |7#H9]. Here the focus is on obtaining a well-composed
low dynamic range (LDR) image by finding a weighted average of the differently
exposed intensity images.

For a real world scene, the exposure times can vary from values as small as
1/500s to as high as 5s. Although the camera can be held still for the lower
exposures, it would be an incredible feat for any photographer to hold the cam-
era steady for long exposure times while taking multiple shots of a static scene.
One could resort to tripods but they are bulky and difficult to carry around
and setup. The issue of motion blurring has recently attracted a lot of atten-
tion. The restoration of uniformly blurred images was considered in |10, [11].
Fergus et al. [12] consider single image blind-deblurring for uniformly blurred
images using natural image priors. However, as shown in [13, [14], camera ro-
tation which induces space-variant blurring cannot be ignored in camera-shake.

A. Fusiello et al. (Eds.): ECCV 2012 Ws/Demos, Part II, LNCS 7584, pp. 451-{f60] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



452 C.S. Vijay, P. Chandramouli, and R. Ambasamudram

Fig. 1. Multiple exposed images where higher exposures are motion-blurred

The works in [14-16] consider single image deblurring of space-variantly motion-
blurred images. Interestingly, none of the above works address the high dynamic
(HD) nature of scenes. One of the effects of HD scenes is pixel saturation which
causes ringing effects while deblurring. This problem was addressed in [17, |1§]
by masking outliers. Lu et al. |[19] discuss the problem of obtaining HDR images
from motion blurred observations and jointly estimate the CRF, blur kernels
and the latent scene irradiance. However, they consider a space-invariant blur
model which restricts the camera motion to in-plane translations. Though, this
is a good step forward, it is limited in scope as the effect of rotation on blur is
greater than that of translation |14] and hence cannot be ignored.

In this paper, we discuss a method to obtain the HDR image from a set of
differently exposed images that are likely to be non-uniformly blurred. While
capturing images with hand-held cameras, one can safely assume that no blur-
ring will occur for low exposure times since the displacement of the camera in
this short duration will be negligible. Hence, we consider a scenario with access
to both blurred higher exposures and non-blurred lower exposures. The scene
is assumed to be distant enough to preclude any parallax effects. The higher
exposures (though blurred) contain information not present in the less-exposed
images. Fig. 1 shows one such image set. One simplistic solution is to deblur the
images and then reconstruct the HDR using existing methods. This is, of course,
subject to the effectiveness of deblurring of these over-exposed images which i)
may not be very accurate, and ii) may also contain artifacts. Here, we adopt the
transformation spread function (TSF) [20] aka motion density function [15] to
model space-variant blur. The TSF describes the blurring process as a weighted
average of differently transformed versions of the latent scene irradiance. Stud-
ies have revealed that a general camera motion can be well-approximated by a
3D TSF (in-plane translation and rotation) when the depth variations are not
significant [14, [15]. For the estimation of these TSFs, we assume that the blur is
uniform locally, and use the local point spread functions (PSFs) of the blurred
(high exposure) images, which are derived using patches of blurred and non-
blurred (lower exposure) image pairs centered at the same location. The scene
irradiance is then estimated using least square minimization along with total
variation regularization. Thus, we simultaneously achieve the twin objectives of
deblurring and HDR imaging.

We list below the main contributions of this work:

1. This is the first attempt of its kind for recovering HDR, from non-uniformly

blurred images.
2. We propose TSF estimation in the irradiance domain in order to handle
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in-plane translation as well as rotation. This is a generalization of Lu et al.’s
work [19] which allows for only simple translations since it uses uniform PSF.
3. We use locally estimated PSFs to arrive at the TSF which has not been
attempted before.

2 Blur Model and TSF

During the image formation process, the scene radiance passes through a camera
pipeline [2], before getting converted into intensity values. The pixel intensity
value in an image is a monotonic but nonlinear function of the irradiance and
the exposure period. The light energy accumulated can be described as
At
X = Edt+n (1)
t=0
where F is the latent irradiance, At is the exposure time and n is additive noise.
This accumulated energy undergoes several nonlinear conversions before being
represented as pixel intensity value. These nonlinearities collectively are termed
as the CRF, resulting in the intensity Z = f(X). Given the exposure time and
the CRF, the irradiance can be obtained as B = f~1(Z)/At where f~! is the
inverse CRF. It is important to note that this inverse mapping is not linear. Since
the CRF maps the response of a particular camera setting, it is independent of
the scene and can be calculated off-line.
When there is camera motion, the latent irradiance image (considering a static
scene) can be viewed as undergoing a series of transformations. The final obser-
vation is an accumulation of the result of all these transformations. i.e.,

Z:f(/::rt(E) dt>—|—n 2)

where T’y refers to the homography transformation operation at instant ¢, and
I'; (E) denotes the outcome of applying I'; on E. Each of these transformations
contributes according to the time spent in that state (exposure time), and is
represented by suitably derived weights. While averaging over time, the temporal
information is lost. In the TSF model, the result (blurred image) is the average
over all possible transformations.

The general camera motion can be well approximated by 3 degrees of motion
(in-plane translation and rotation) |15] when depth variations in the scene are
minimal. The transformation space can be sampled to obtain a finite set H of Ng
different transformations, which contains the transformations to approximately
form the blurred image. The TSF hr is a function that maps the finite set of
transformations H to a non-negative real number i.e., hy : H — R. For each
transformation I' € H, the value of the TSF hp (T') denotes the fraction of the
total exposure duration for which the camera stayed in the position that caused
the transformation I". The final blurred intensity image in terms of the TSF is

Z= (Z b <rk>rk<E>> 3)

k=1
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2.1 TSF Estimation

In this work, the input consists of a set of differently exposed images with non-
uniformly blurred higher exposures. The differently exposed images are obtained
from the same scene irradiance. Hence, the inverse map of each intensity image
to the irradiance domain will be comparable. The image intensity and irradiance
are related by B = f~1(Z%)/At!, where i takes values 1. .. Ng for Ng differently
exposed images, Z° is the i*" observation, and B’ is the corresponding irradi-
ance map. Because of the non-linearity of the CRF, irradiance values obtained
from pixels with very high or very low intensities may not be comparable. The
influence of such pixels is restricted using a mask whose weights are obtained
from a 256-point Tukey window.

While estimating the TSF, we first estimate the PSF at local patches where
the blur may be assumed to be locally uniform. The estimation is carried out
with respect to a non-blurred lower exposure by minimizing

sy (e )] @

p
where h is a local PSF to be estimated, s is the observation index correspond-
ing to one of the blurred higher exposures, r is the index of highest exposed
non-blurred observation, By, is the blurred irradiance patch of an exposure cor-
responding to s, EJ is the the non-blurred irradiance patch of an exposure cor-
responding to r, and m,, is the mask applied at location p. We estimate Ny, such
PSFs hp, hp, ... hp,, at image locations p1 pz...pn,. If any misalignment is
present among the observations, it is implicitly accounted for in the estimated
TSF (globally) and PSF (locally).

Fig. 2 demonstrates PSF estimation for a non-uniformly blurred image cap-
tured with a hand-held camera. The space-variant nature of the blur is evident
from the estimated PSFs. A PSF at a pixel (i, j) is related to TSF as

argmin H (my - B
h

h(i,j;m,n) = ZhT — (ir —i),n — (jr — j)) (5)

where (ir, jr) denotes the co-ordinates of the point when a transformation I'~*
is applied on (i,7), and §; denotes the 2D Kronecker delta function. Each local
PSF p; can be considered as a weighted sum of the components of the TSF of the
image. Such a linear relation can be expressed as hp, = Mihy for [ = 1...Np,
where M is a matrix whose entries are determined by the location p; of the blur
kernel and the interpolation coefficients. All the M;s and p;s for/ =1... N, can
be stacked and related to the TSF as

h = Mhr (6)

where h is a stack of the estimated blur kernels. A typical value for N, is 5.
To get an estimate of the sparse TSF that is consistent with the observed blur
kernel, we minimize the following cost function

ar%mith*MhTH2+>\s Azl (7)
T
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Fig. 2. The blurred image and some select patches are shown. The estimated PSF's are
shown along-side each patch.

where a sparsity constraint is enforced by the l;-norm term. To minimize the
cost function, we use the toolbox available at ] The TSFs of all the blurred
higher exposures are obtained using this method. For a detailed explanation of
TSF estimation, we refer the reader to our supplementary material ﬂﬂ]

3 Scene Irradiance Estimation

Having obtained the T'SFs of the blurred images, we proceed to invert the blur-
ring process to obtain the actual scene irradiance which is present in the different
exposures. We pose this as an optimization problem, where the solution can be
obtained by minimizing the cost function

NEg
Y IK'E - BY|? (8)
=1

Here E and B* are the latent irradiance and the given i** image irradiance of the

scene, expressed in vector form and the sum is over all the observations. K* is
a large but sparse matrix, which represents the space-variant blurring operation
and whose rows are a local blur filter acting on F.

The CRF of cameras is highly nonlinear at very high and very low pixel in-
tensities. In order to restrict the influence of these nonlinearities, we mask these
pixels from contributing to the estimation process. This is done to emphasize the
usage of the linear part of the CRF. The mask is derived from a Tukey window,
which has a smooth transition from 0 to 1. The mask applied is common to
all 3 channels. This is done so as to maintain color balance. The parameter of
the window used to obtain the mask depends on the CRF and image histogram
(intensity distribution). This mask also acts as a pixel weighting function for dif-
ferent exposures. The summation can be removed from equation (&) by stacking
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all the irradiance images (B's) into a single matrix B and the K matrices into
a single matrix K and can be expressed in a single matrix equation

ImKE — mB]|? 9)

where F is the latent irradiance to be estimated and m is a large diagonal matrix
which is a collection of all the masks applied to different exposures. The mask
values are arranged along the diagonal. While optimizing the above cost, total
variation regularization is used to stabilize the solution, thus giving the energy

O = argmin |m.KE — m.B|]> + Ary / |VE| (10)
E

We solve the above equation iteratively using conjugate gradient method. The
derivative of the cost function is

00 ~ ~ ~ VE
—mK" (m. (KE~B))+ v (v 11
op ~ M AV Vv (11)
where E is the irradiance image in t*" iteration, \py is the total variation reg-
ularization parameter, and K7 represents the adjoint of the blurring operation
and corresponds to inverse warping |16]. The term K F is obtained by blurring

E using TSFs that are present in K.

4 Experimental Results

For the synthetic case, we captured a set of observations at different exposures
from a still camera. The higher exposures from this non-blurred dataset were
subject to non-uniform motion blurring. The real data was captured with a hand-
held DSLR Sony « and a compact Fujifilm HS10. While the blurring was found
to be negligible for lower exposures, it was significant at higher exposures. All
the datasets were captured from a sufficiently long distance. The CRF of these
cameras were derived off-line using the code of |2] from images captured using a
tripod (for stability) and for identical camera settings as used in the experiments.
To recover the HDR image from the given set (which includes blurred observa-
tions), we first convert the intensities to irradiances. Next, we select patches in
a blurred image and corresponding patches in a non-blurred frame (with maxi-
mum exposure) to evaluate the local PSFs. Using these estimated PSFs, the TSF
corresponding to each of the blurred images is determined by solving Eqn.(7).
The scene irradiance is finally estimated by minimizing Eqn.(10). For viewing
purpose, the estimated irradiance image was tone-mapped using the technique
of |23]. The quality of the final LDR image is subject to tone-mapping.

We initially applied our scheme on the synthetic image set shown in Fig. 3.
The higher exposures (Fig. 4(a) and (b)) of ;s and 2s are blurred using known
TSFs. These TSFs were chosen along the lines of blurs caused by real camera-
shake in hand-held cameras so as to simulate a real-world scenario. The TSF
dimensions t, and t, took integer values € [-12,12], and 6, ranged € [-1.5,1.5]
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Fig. 5. (a) Original tone-mapped HDR image derived from non-blurred images. (b)
HDR obtained from individually deblurred images. (c¢) Result obtained using [19]. (d)
Estimated HDR tone-mapped image using our method.

degrees in steps of 0.25 degrees. The blurred images have visible regions that are
not apparent in lower exposures. We hope to recover these while estimating the
HDR irradiance but without blur.

Fig. 5(a) shows the tone-mapped HDR image obtained from the original set of
non-blurred images using E] This result is used for comparison and to evaluate
the performance of our method. Fig. 5(b) shows the HDR image obtained from a
set of deblurred images. The deblurring was performed using the code provided
by Whyte et al. [@] It is quite apparent that the image is still blurred to some
extent (as can be seen around the numbers) and it contains artifacts along the
edges. This is understandable as [@] is not designed for the HDR problem. Hence
a naive and computationally intensive solution of deblurring images and findin,
the HDR is not very effective. Fig. 5(c) shows the result obtained using
for our non-uniformly blurred data. Although the image has been deblurred in
certain regions such as the illuminated parts and the book title, residual blur can
be seen in the outer region where the effect of rotation is more. For instance, the
digits in the calender and the flower pattern near the left-hand-side boundary
of the image appear blurred. This is not surprising since ﬂﬁ] is not equipped
to handle non-uniform blur. Fig. 5(d) shows the recovered HDR image using
our method. The details in the scene become more apparent in our output. The
front-illuminated part is visible and so are the darker regions in the scene such
as the book title and the top image on the booklet. The numbers which become
better visible with increased exposure have been uniformly lit. The result is
in-fact comparable to Fig. 5(a) which was obtained without any blur.
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Fig. 6. Two different real data sets
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Fig. 7. Recovered HDR images for the datasets in Fig. 6. using our method
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Fig. 8. Close-up of blurred data (available only in the higher exposures) and the cor-
responding patch in the output image

Fig. 6 shows two real image sets with the highest exposure being 2s. The first
set shown in Fig. 6(a) has images of size 640 x 480 captured at exposure times
115, é, % and 2s. The two highest exposures are motion-blurred. These frames
contain information about the lower portion of the scene that is not visible in
the less-exposed frames. The second set in Fig. 6(b) shows images captured with
exposure durations é, é and 1s. The observations corresponding to ;) and 1s are
blurred. The difference in the information available among these observations is
clearly evident.

In Fig. 7, the HDR outputs of both the sets are shown for our model.
The results have been rid of saturation effects and the darker regions are well-lit.
The blurred information in the higher exposures has been restored while retain-
ing the information from lower exposure, such as the illuminated regions in the
scene. In Fig. 8, we show close-up patches from the most exposed images and
the estimated result (side-by-side). Figs. 8(a-d) correspond to the first set while
Figs. 8(e-h) correspond to the second. Fig. 8(a) reveals reduced smudging in
the image. Also, the texture on the toy has been recovered. Patch sets 8(b) and

(c) bring out the pattern present in the lower part of the scene clearly. These
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Fig. 9. (a) Our Result. (b) Result of [19]. (c) Close-ups of (a). (d) Close-ups of (b).

patterns are not quite visible in the lower exposures. From Fig. 8(d), we can also
observe that the result is shifted with respect to the input blur patches. This
shift is due to the compensation for the misalignment between input patches.
Fig. 8(e-h) further reinforce the fact that our method satisfactorily achieves the
twin objectives of HDR imaging and deblurring.

In Fig. 9, we give a comparison of the results obtained by our method (Fig.
9(a)) with that of [19] (Fig. 9(b)) on the dataset of Fig. 6(a). Both the results
are well lit but Fig. 9(b) has significant residual blur. While Fig. 9(c) shows the
close-up patches from our result, those obtained using [@] are shown in Fig.
9(d). Since the upper portion of the scene is well illuminated, the non-blurred
lower exposures contribute to the final result. Hence, in the first patch, we see
that the outputs from both the algorithms are focused. However, since HE] uses a
convolution model, blur persists in their result as highlighted in second and third
patches of Fig. 9(d). In contrast, the corresponding patches from our output in
Fig. 9(c), show that the latent irradiance image has been completely recovered.
This example serves to clearly bring out the advantages of our approach over
the state-of-the-art [19] in HDR imaging with blur.

5 Conclusions

In this paper, we proposed an approach to obtain high dynamic scene irradiance
from a set of frames captured with a hand-held camera, where the higher expo-
sures are non-uniformly blurred due to camera-shake. A two-step procedure was
proposed in which we first obtain the TSF of each blurred image followed by
regularization to solve for scene irradiance. The method was validated on both
synthetic and real datasets. It will be interesting to extend our framework to
include the possibility of all the frames being blurred (as in the case of night
scenes) and for dynamic scenarios.
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