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Abstract

The goal of single image reflection removal is to suppress

unwanted merging of radiances from different surfaces in

the scene. This is an inherently ill-posed and challenging

problem. Conventional approaches use different assump-

tions and constraints on the background and reflected lay-

ers to solve this problem. Recently, deep learning-based

approaches have been applied to this task. These methods

require extensive amount of realistic data for training. In

this paper, we propose to incorporate class-specific prior

models for reducing the ill-posedness of the reflection sep-

aration task. Specifically, we use a pre-trained deep face-

generative model for reflection supression from face images.

We design an optimization scheme that effectively leverages

the deep generative model and leads to a constrained so-

lution space. Our method does not require training data

corresponding to reflection separation task. We evaluate

our proposed approach using both synthetic and real world

facial images containing reflections and compare with ex-

isting state-of-the-art techniques. The results demonstrate

advantages of our approach over the current state-of-the-

art in single image reflection separation from faces.

1. Introduction

Photographs taken through transparent/translucent sur-

faces contain reflections in addition to the desired back-

ground scene. The presence of such reflections limits the

visibility of the desired scene. Moreover, presence of re-

flections in facial images can severely limit the performance

of face-specific computer vision algorithms. Furthermore,

separating reflections from facial images could be useful

in surveillance and security applications. This motivates

the need to effectively remove unwanted reflections from

scenes, in particular face images captured through a glass

pane.

An observed image through a glass pane I can be mod-

eled as a superposition of a background scene B and a re-

flected component R

I = B+R (1)

The goal of reflection removal is to suppress unwanted

reflections R so that background scene B can be reli-

ably recovered. This is an inherently ill-posed problem,

which requires additional information to obtain a reliable

solution. One approach is to make use of multiple im-

ages [5, 8, 11, 37] and exploit additional cues so that the

problem becomes more tractable. When multiple images

are not available, reflection removal from a single image

using conventional approaches [20, 26, 2, 32] use prior as-

sumptions and constraints on the background and reflection

layers to make the problem less ill-posed. However, such

prior assumptions may not always hold, in which case, these

conventional approaches cannot yield satisfactory results.

Recently, deep learning based approaches have also been

applied to the problem of single image reflection separation

in [7, 40, 14, 38, 35, 36], which improved the state-of-the-

art in reflection suppression. However, capturing large scale

real datasets for the task of single image reflection suppres-

sion is highly challenging. Due to lack of availability of

large scale real datasets for training neural networks for the

task of single image reflection removal, deep learning based

reflection removal techniques such as [7, 40, 14, 38, 35, 36]

use synthetic datasets for learning reflection removal. When

synthesized datasets cannot adequately capture the varia-

tions in real-world reflection corrupted images, deep learn-

ing based techniques can suffer from decline in performance

while suppressing reflections in real-world images.

In this paper, we propose a novel optimization-based

unsupervised blind reflection suppression method for fa-

cial images using deep generative priors for the back-

ground layer. In recent years, significant success has been

achieved by neural network-based deep generative models

in learning the representation for different kinds of data

[17, 10, 29, 15, 23]. Our objective is to exploit face-specific

priors learnt by a generative model to guide the optimization

of the background scene radiance. We observe that such an

approach aids in reducing the ill-posedness of the problem.



Input [40] [36] [14] [39] Ours
Figure 1. Visual comparison on real images from prior work. The input and output images are of size 64×64 for our algorithm, while they

are of size 256× 256 for the methods in [14, 40, 36, 39].

Our scheme does not require extensive training datasets for

the task of reflection suppression.

In Fig. 1, we see two real examples of face images

with reflections along with the results of the techniques in

[14, 40, 36, 39] and our result. Except for one of the result

of [40], we observe that these recent state-of-the-art reflec-

tion suppression techniques are unable to remove reflection.

This indicates that the current models are still not adequate

to handle such difficult tasks. In contrast, our method is

successful to some extent. However, there is a limitation of

our method. As we see subsequently, the resolution of the

output of our method is limited by the generative prior that

we utilize.

2. Prior Work

Since reflection suppression is a highly ill-posed prob-

lem, additional information is required to reliably recover

the desired background scene. Existing approaches to re-

flection suppression can be broadly classified as single

image-based and multiple image-based approaches. Use of

multiple images can make the problem of reflection sepa-

ration more tractable. Multiple image based reflection sup-

pression exploiting motion cues are used in [37], specifi-

cally motion cues such as translative motion in [5], affine

transformations in [8], homography in [11]. There are

also multiple image based reflection removal methods uti-

lizing images taken under different imaging conditions such

as images with flash and no-flash [1], images with different

focus settings [25], and images with different polarization

[18].

Often, multiple images are not available, and therefore

reflection suppression from single image becomes neces-

sary. For single images, conventional reflection removal

algorithms incorporate additional constraints and priors on

the background and reflected layers to perform reflection

separation. When imaging through glass, it is more likely

that the desired background is in focus and hence sharp,

whereas the reflection layer could be out of focus and there-

fore blurry. The authors in [20] exploit separable sparse

gradients prior due to different levels of blur in background

and reflection layers. Similarly, in [32], the authors esti-

mate depth of field to separate the background and reflec-

tion layers. The authors in [2] use Laplacian data fidelity

term and an l0 gradient sparsity prior for the background

layer for reflection suppression. These methods [20, 32, 2]

assume that reflection layer is much blurred compared to

the desired background, and therefore can breakdown when

this assumption is not met. Often reflected component is

predominant in only a part of the image. For such images,

the authors in [30] first estimate a reflection map based on

different blur levels for the two layers, and use a content

prior based on the internal patch recurrence to recover re-

gions in the background image contaminated by reflections.

When images are captured through thick glass panes, the

reflected layer contains shifted attentuated versions of the

same scene, which is referred to as ghosting effect. The

authors in [26, 13, 12], make use of such ghosting cues

to separate the reflection component and background layer

from single image. Recently, the authors in [39] formulated

reflection suppression as a convex model, and obtained its

solution by gradient thresholding and solving a partial dif-

ferential equation using Discrete Cosine Transform. How-

ever, this approach tends to fail when edges in the reflection

layer are sharp and strong.

Recently, deep learning based approaches have been ap-

plied to the task of single image reflection suppression. Fan

et al. [7] proposed the first convolutional neural network

(CNN) to solve single image reflection suppression and to

handle artifacts due to saturation. A compact neural net-

work for reflection separation was proposed in [14], where

color ambiguity and saturation are handled explicitly in syn-

thetic data generation. Authors in [40] trained a deep net-

work for reflection suppression by including a perceptual

feature loss, an adversarial loss for background layer and a



novel pixel-level exclusion loss and showed improved per-

formance in reflection removal. Yang et al. [38] proposed

a bidirectional network which estimates both background

scene and reflected image in a cascade neural network to

improve reflection suppression. Due to lack of sufficiently

large real datasets for the task of single image reflection

removal, the works [7, 14, 40, 38] use synthetic datasets

for training. This can lead to decline in performance while

suppressing reflections in real world images. Authors in

[31, 33] used a deep network which combine image appear-

ance information and multi-scalegradient information to ef-

fectively suppress reflections from superposed images. Ad-

ditionally, they also created a new Reflection Image Dataset

containing 3250 images for training. Since creating large

datasets for the task of reflection removal is difficult, re-

cent works, [36, 16] instead attempt to improve the syn-

thetic data generation to incorporate more realistic reflec-

tion scenarios. Wen et al. [36] use an adverserially trained

synthesis network which outputs an alpha-blending mask to

generate realistic reflection contaminated images. A reflec-

tion removal network is then trained with such synthetically

generated training data. Kim et al. [16] use displacement

mapping and path tracing to simulate the depth-dependent

light transportation for synthesizing a realistic dataset for

the reflection removal problem. A deep network is then

trained using the generated data for reflection separation.

Since imaging aligned pairs of images with and without re-

flections is difficult, Wei et al. [35] instead created a dataset

with misaligned pairs of images, and trained a deep network

for reflection removal using such misaligned data by in-

corporating specific network enhancements and high-level

feature losses which are invariant to misalignments to im-

prove reflection suppression. In the absence of training

sets, Gandelsman et al. [9] used a coupled deep image prior

networks for unsupervised layer decomposition tasks such

as image-dehazing, foreground/background segmentation,

watermark-removal with single image. However, for the

more challenging decomposition task of reflection separa-

tion, [9] requires two different mixture images of the same

background and reflection images.

The problem of reflection removal in images of specific

classes is addressed in [24, 19, 34]. The authors in [24] use

an optimization based approach to remove reflections from

frontal face images with eye glasses using tight constraints

which characterize eye glass reflection. In [19], categories

of both transmitted background and reflected layers are as-

sumed to be known, and a generative adverserial network

(GAN) based network is used to jointly estimate both the

layers. In contrast, in our approach, we assume the cate-

gory of only background scene i.e. faces, with no additional

assumption on reflected layer. Moreover, ours is an opti-

mization based approach which does not require training

data for reflection suppression. We note that, in the recent

work [34], reflection suppression from facial images is per-

formed using deep neural networks. In contrast to our un-

supervised optimization based approach for face reflection

removal, the approach in [34] uses very strong supervision

during training, requiring two input images with reflection

and ground truth background face along with corresponding

label for face recognition task. Obtaining such highly super-

vised dataset is challenging and therefore authors in [34]

synthesize face images with reflections by combining sep-

arately captured reflections and labelled background faces.

Moreover, this network needs additional image for guiding

reflection removal, whereas our work uses only single im-

age for reflection suppression.

In recent years, deep generative models beginning with

Variational Autoencoders (VAEs) [17] and GANS [10]

have demonstrated impressive ability in learning represen-

tations by generating new images from the distribution of

training data. Wasserstein autoencoders (WAEs) [29] which

minimize a penalized form of the Wasserstein distance be-

tween the model and target distributions have shown im-

proved performance over traditional VAEs which minimize

Kullback-Leibler distance between these distributions. Re-

cently, new powerful generative models such as progressive

GANs (PGANs) [15] and Vector Quantized Variational Au-

toEncoder (VQ-VAE) [23] have been proposed which can

generate very high quality images. Generative models have

also been used in compressive sensing in [6], semantic

photo manipulation [4], and class-specific image restora-

tion tasks such as face inpainting [21] and deblurring [3].

In our work, we utilize face-specific priors learnt by a WAE

model pretrained on face images to guide the optimization

based recovery of background faces.

Highlights: The highlights of our work can be summa-

rized as follows: i) We propose a single image reflection

removal scheme without any need of realistic training data.

ii) We develop an optimization scheme that suitably exploits

a pre-trained generative model (WAE) for face images. This

can be extended by using more powerful generative models

such as PGANs, VQ-VAE to obtain high resolution results.

iii) Experiments show that our scheme can achieve a supe-

rior level of performance in reflection suppression, which

is not possible by existing methods, albeit with a limit on

image resolution.

3. Optimization using Generative Priors

Since separation of background image B from the su-

perposed image I in equation. (1), is ill-posed, we pro-

pose to use the prior knowledge that the background im-

age B belongs to the specific class of face images. We

incorporate this knowledge using a generative model G (a

WAE) pretrained on facial images. We develop an optimiza-

tion scheme that suitably exploits this pretrained generative

model.



3.1. Optimizing latent representation

A possible approach could be to directly consider

B = G(z), where z is the corresponding representation of

a face image in the latent space. Then, one could solve for

the latent representation of background layer as

ẑ = argmin
z

‖I−G(z)−R‖22 (2)

However, this is still ill-posed, as the reflection layer R is

still unknown. Moreover, even if R is known, solving equa-

tion. (2) is still ill-posed as noted in [4], where additional

perceptual losses are also incorporated. Even then, when

G is not able to generate images resembling B, there will

be representation error as noted in [6]. This is unavoidable

because finding a latent code z that can accurately recover

an arbitrary face image which is not similar to the training

set is hard. Therefore, direct optimization on latent space

of generative model is not feasible for the problem of sin-

gle image reflection suppression. We therefore propose an

Encoder-Decoder based optimization approach, which cir-

cumvents these problems by leveraging the encoding ability

of a variational autoencoder.

3.2. Encoder-Decoder based optimization

Figure 2. Projection of initial estimate of background face image

into face-image space of the generative model. We see that the

reflective components get removed when the the estimates are fed

forward through the WAE.

Given an face image observation I corrupted by reflec-

tion components, we consider the input observation I as the

initial estimate for both the background layer B and the re-

flected layer R, since there is no other information avail-

able. Let E and D denote the encoder and decoder models

of the WAE [29] pretrained using face images. Given an

estimate of the background layer Bt, where t denotes the

iteration index, we can project it to the set corresponding to

the range of the decoder D, by feeding it to the encoder and

decoder as B̂t = D (E (Bt)). While the estimate of Bt

would contain components of the reflected layer, the pro-

jected image B̂t would be devoid of the reflected compo-

nents. This is because the decoder has been trained to gen-

erate face images. However, there would be discrepancies

between the facial features of the generated projection and

the true background face. In Figure. 2, we see examples

of the result of such a projection when face images with

reflection are fed through WAE. Due to reflections, the en-

coded representation E (Bt) would also not correspond to

the latent representation of the true background face image.

In order to arrive at an estimate which is consistent with

the observed image, as well as to enforce the class-specific

model, we propose a cost function E (Bt) consisting of two

main components: the data consistency loss Closs (Bt) and

the generative prior loss Gloss (Bt). These loss functions

are defined as

Closs (Bt) = λVGG

N
∑

i=1

1

Mi

‖F i

(

B̂t +Rt

)

− F i (I) ‖22+

‖B̂t +Rt − I‖22

Gloss (Bt) = ‖Bt − B̂t‖
2
2 + λVGG

N
∑

i=1

‖F i (Bt)− F i

(

B̂t

)

‖22,

(3)

where F i () corresponds to i-th layer with Mi features in the

VGG16 network [27]. In addition, we also minimize the

correlation Rloss between the gradients of the two layers

∇Bt and ∇Rt.

Rloss (Bt) = ‖∇Bt ⊙∇Rt‖1, (4)

where ⊙ denotes point-wise multiplication. This is based

on the observation that the edges of reflected and trans-

mitted layer are distinct from each other [40]. We further

incorporate total-variation prior on the background layer

TVloss (B) = ‖∇Bt‖1 to encourage sharpness of the back-

ground layer. Our combined loss function can be written as

Eloss = Closs + Gloss +Rloss + TVloss (5)

Note that in equation 3, we use B̂t = D (E (Bt)) instead

of Bt because initially Bt contains significant correlation

with Rt. Due to finite representation error of the generative

model, B̂ and Bt are not equal. The use of perceptual loss

components in our cost function, helps in improving per-

ceptual similarity between B̂ and Bt. At each iteration t,

we first update the background layer using RMSprop [28]

keeping current estimate of the reflected layer fixed. Subse-

quently, we update the reflected layer as Rt+1 = I−Bt+1.

Algorithm 1 summarizes our approach.

4. Experiments

We evaluate our approach to reflection suppression qual-

itatively and also quantitatively using normalized cross cor-

relation metric. We first pretrain a Wassestein Autoencoder

using CelebA [22] training dataset with face images of size

64x64. We use this pretrained WAE as our generative prior.



Figure 3. Synthetic experiment with defocused reflecting layer and images of size 256×256. Row 1: input. Rows 2-4: outputs of [14], [39],

and [40], respectively. Last row: true background layer.

Algorithm 1 Encoder-Decoder based Optimization

Require: Face image with reflection I

Ensure: clean image B

1: Initialize B0 = I,R0 = I.

2: for t = 0 to T do

3: B̂t = D (E (Bt)).
4: Compute the gradients of Eloss w.r.t. Bt.

5: Update Bt+1 using RMSprop [28].

6: Update Rt+1 = I−Bt+1.

7: end for

8: B = BT .

Consequently, in all experiments with our approach, input

and output images should be of size 64×64.

We evaluate our method on both real and synthetic ob-

servations. For synthetic experiments, we use faces from

CelebA test dataset for the background layer B. To gener-

ate reflected layer, we make use of cropped and resized im-

ages from PASCAL VOC 2012 dataset. The reflected layer

is given as R = αR1 ∗ h, where R1 are the images from

dataset, where we use α = 0.3 or 0.5 as the scaling factors,

h is the blur kernel, which is either an implulse function or

a Gaussian filter with variance 3.5 and ∗ represents convo-

lution operation. To generate superposed images I, we con-

sider I = f(B+R), where f is a normalizing function that

scales its input so that there is no saturation. For real exper-

iments, we captured images of people with reflections and

then we manually cropped regions corresponding to faces.

The cropped regions were of sizes close to 350×350. To ap-

ply our scheme, we resized these cropped regions to 64×64.

For both synthetic and real experiments, we apply our itera-

tive optimization scheme for 6000 iterations with a learning

rate of 1e − 4 using alternate update steps for background

layer and reflection layer as discussed in section. 3.2.

We compare the performance of our method with that

of the techniques in [14, 40, 36, 39]. We use the imple-

mentations publicly shared by the authors of these papers.

The deep network-based models of [14, 40, 36] consider

that presence of a significant extent of receptive field. Ther-

fore, we used inputs of higher resolution to these networks

as well as to the method of [39].

Synthetic experiments We generate 50 observations in our

evaluation by using different images for background and



Figure 4. Synthetic experiment with sharp reflecting layer and images of size 256 × 256. Row 1: input. Rows 2-4: outputs of [14], [39],

and [40], respectively.

Figure 5. Our results with sharp reflecting layer. Row1: input images when the reflecting layer was scaled by 0.5. Row2: output of our

method with Row1 as input. Row3: input images when the reflecting layer was scaled by 0.3. Row4: our method with Row3 as input.

reflective layer. For comparing with other methods, the

observations are generated by resizing the two layers to

256×256. For our method, we resize the images to 64×64.

Fig. 3 shows sample images and results from other meth-



ods when the reflected layer was defocused and scaled by

a factor 0.3. In this experiment, we observe that results

of the methods of [14, 40, 39] do remove the reflections

by some extent. In some cases, the estimates are accurate

and in some cases they are not. We also observed that the

method of [36] was not working well on this data. We did

try all the models that were made available by the authors

of [36].

We next repeated the experiment (Fig. 4) with the same

set of images but without defocusing the reflected layer. The

reflected layer was weighted by a factor of 0.3. For this

scenario, we observe that in most of the cases, the two layers

were not getting separated. The experiments of Figs. 3 and

4, indicate that layer separation becomes harder when the

reflected layer is also sharp.

We applied our method on the same set of images but

with resizing. We quantified the performance by evaluating

the normalized cross-correlation (NCC) between our esti-

mate of the background face image and the true face image.

When the reflected layer was defocused and weighted by a

factor of 0.3, the average NCC value was 0.92. This value

reduced to 0.90 when the reflected layer was kept sharp.

One can see sample input and output images for this sce-

nario in rows 3 and 4 of Fig. 5, respectively. We also

tried a more difficult scenario wherein the reflected layer

was scaled by 0.5 (Row1 of Fig. 5). Even for this scenario

our results (Row2 of Fig. 5), indicate significant suppres-

sion of the reflected layer. In this case, the average NCC

value dropped to 0.87.

Real experiments We qualitatively evaluate our method on

real images in Figs. 1 and 6 by visual comparison with the

approaches of [14, 40, 36, 39]. From Figs. 1 and 6 we

can observe that these recent state-of-the-art reflection sup-

pression techniques are unable to remove strong reflections

from facial images. Only the approach in [40] second col-

umn in Figs. 1 and 6 is able to remove reflections from fa-

cial images, but only when the reflection component is not

sharp (corresponding to row 1 in Fig. 1 and row 3 in Fig. 6).

None of the approaches [14, 40, 36, 39] are able to suppress

strong or sharp reflections from facial images. In contrast,

our face generative prior based approach is able to better

handle even such strong reflections albeit at low resolutions.

In Fig. 6, we also show the effect of representation error by

plotting the output B̂ of the decoder in the final iteration.

The discrepancies between the faces shown in the last two

columns is because it is hard for a generative model to ac-

curately represent any arbitrary face image.

5. Conclusions

Blind reflection separation from single images is a chal-

lenging problem. Capturing large datasets for supervised

learning of reflection removal is difficult. We have pre-

sented a novel optimization-based unsupervised blind re-

flection suppression method from a single facial image

leveraging deep generative priors. Our approach does not

require of large datasets for the task of reflection suppres-

sion. Our experimental results show that learning-based

approaches trained on general reflection corrupted images

do not generalize well to facial images. Comparisons with

prior work using both synthetic and real experiments shows

that our method outperforms prior state of art reflection re-

moval approaches in removing reflections from facial im-

ages. Specifically, our approach can remove strong and

sharp reflections, where all other methods fail. This shows

that optimization using generative priors could be an ef-

fective alternative, especially when constructing supervised

training dataset is tedious. However, our approach is lim-

ited by the resolution of generative prior model. This can

be remedied by the use of deep priors based on more pow-

erful generative models.
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