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Image matching with higher-order
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We propose a geometric matching technique in which line segments and elliptical arcs are used as edge fea-
tures. The use of these higher-order features renders feature representation efficient. We derive distance mea-
sures to evaluate the similarity between the features of the model and those of the image. The model trans-
formation parameters are found by searching a 3-D transformation space using cell-decomposition. The
performance of the proposed method is quite good when tested on a variety of images. © 2010 Optical Society
of America
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. INTRODUCTION
mage matching refers to the process of locating known
bjects. It is necessary for many applications including in-
ustrial inspection, robot navigation, aerial image analy-
is, and image retrieval [1,2]. The edge maps of the model
bject and the image are usually represented by points
1,3], lines [4,5], circles [6], and other shape descriptors
7,8]. The technique proposed in [9] uses a new set of fea-
ures called virtual circles which represent the empty
pace between edge points and not the actual edges. The
eatures are compared in order to locate the presence of
he model in the probe image. There are two basic ap-
roaches to find a model in an image: those based on fea-
ure correspondences which use pairing between model
eatures and image features [6,10], and those which
earch for the best possible transformations within a
ransformation space [4,11–13]. Our focus in this paper is
n the latter approach.

In Hough transform-based techniques [11,14], the
ransformation space is represented by a grid of bins. A
arge number of pairings between model and image fea-
ures is generated and based on the feature correspon-
ences, the counters of bins are incremented. Bins having

large count are considered as good candidates for
atching. This approach can be inaccurate since false

eaks can occur even at incorrect transformations [4]. The
ore popular point-matching algorithm proposed by Hut-

enlocher et al. [12] finds the transformations that mini-
ize the Hausdorff distance between the model and im-

ge point-sets. This technique can effectively deal with
utliers as well as occlusions. Many speed-up strategies
ave also been subsequently developed [1]. In [15], Haus-
orff distance-based matching has been applied on line
egment features. Line segments are treated as points in
-D space, which reduces it to a 4-D point-matching prob-
1084-7529/10/040739-10/$15.00 © 2
em under translation. The main disadvantage is that
hen there are breaks in line segments (due to occlusions
r fragmented image data), significant errors are intro-
uced in the location of line segments due to change in
he length and the mid-point that can degrade the perfor-
ance [15]. For other transformation space-based ap-

roaches to matching line segments and circles, see
16–20].

In this paper, we develop a geometric matching scheme
n which images are represented using line segments and
rcs [6,21]. We also derive expressions to evaluate the
imilarity between these higher-order features. The
odel transformation is considered to be 2-D translation

nd rotation which is typical in an industrial scenario.
he model is located by searching the transformation
pace using cell-decomposition [22]. We would like to
ention that the work described here is a significant ex-

ension over the authors’ own previous works [23,24]. The
xperimental section of this paper contains several new
esults pertaining to accuracy, noise tolerance, and perfor-
ance in the presence of breakpoints, occlusions and out-

iers. Also, we have included comparisons with the point-
atching technique as well as our implementation using

ine segments alone as features. The novelties of our work
an be summarized as follows: (i) We develop a transfor-
ation space-based matching technique using line seg-
ents and elliptical arcs. (ii) Our representation is inher-

ntly compact due to the use of higher-order features. (iii)
e construct closed-form expressions for the distance
easures to perform feature matching in the presence of

cclusions, illumination variations, and clutter. (iv) Our
ethod is considerably faster than point-matching and

ine-matching techniques.
In Section 2, we discuss feature representation. Dis-

ance measures to compare model and image features are
010 Optical Society of America
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erived in Section 3. The matching scheme is presented in
ection 4. Experimental results are given in Section 5,
nd we conclude with Section 6.

. FEATURE REPRESENTATION
he motivation for using edge features instead of intensi-
ies is to reduce the amount of information to be processed
y the recognition algorithm [4]. In addition, edge fea-
ures are relatively more stable under illumination varia-
ions and/or pose changes.

We follow the technique proposed in one of our earlier
orks [23] to obtain a representation of the edge map of
ray-scale images in terms of line segments and elliptical
rcs. We detect points with significant local intensity
hange (i.e., edge points) using the Canny edge operator.
dge linking is performed using an 8-pixel neighborhood

o get connected sets of edge points. Following this, criti-
al points (which are points at which there is a change in
he shape of the edges) are detected in each connected set
sing the curvature measure proposed in [23]. This mea-
ure evaluates the ratio of change of the tangential angle
ith respect to curve length. For more details, see [23].
he edge map is then divided into edge segments at the
ritical points. These segments are then subject to line fit-
ing and ellipse fitting. A total least-squares approach [25]
s followed for fitting the edge points to line segments. El-
ipse fitting is based on the least-squares algorithm pro-
osed by Fitzgibbon et al. [26] wherein the algebraic dis-
ance is minimized subject to the constraint of ellipticity.
his technique is preferred because it is ellipse-specific,
omputationally efficient, and robust to noise. Those edge
egments that can neither be fit by a line segment nor by
n elliptical arc are segmented with a combination of line
egments and elliptical arcs [23]. For feature representa-
ion, we store the line equation coefficients, the end point
oordinates, the ellipse parameters (center, length of axes,
ngle), the extent of the elliptical arc, and the length of
ach feature (in terms of number of edge pixels).

When conditions are not very well controlled (as is usu-
lly the case in a real-world scenario), features of the
ame object can change across different images due to oc-
lusions, illumination variations, or fragmented image
ata. In Figs. 1(a) and 1(b), we show two instances of the
mage of a computer mouse. We obtain their representa-
ion in terms of line segments and elliptical arcs. For pur-
ose of depiction, we show the entire ellipse that is fitted
o a curved feature. In Fig. 1(c), which corresponds to the
eature representation of Fig. 1(a), we see that the mouse
as been represented by one elliptical arc and a few line
egments (elliptical arcs are shown in pink color and line
egments are shown in green color). On the other hand, in
ig. 1(d), which corresponds to the feature representation
f Fig. 1(b), we observe that the edge segments between
oints Pa and Pb, and those between points Pb and Pc
ave been represented by two different elliptical arcs.
ote that this representation is different from that of Fig.
(c). This is because the edge points between Pa and Pb,
nd the points between Pb and Pc are separated by the
able (unexpectedly) running over the mouse in Fig. 1(b)
nd are linked as separate edge segments. The point we
ish to emphasize is that a matching algorithm should be
obust to such feature distortions.

. FEATURE MATCHING
he line segment and elliptical arc features of the model
nd probe images are obtained as discussed in the previ-
us section and these features are used for matching. We
eed to compare model line segments with image line seg-
ents, and model elliptical arcs with image elliptical

rcs. When there are breaks, a part of the model elliptical
rc can also occasionally be fitted to a line segment.
ence, we need to be able to compare model elliptical arcs
ith line segments, too. Another effect of breaks is that

he parameters of model features such as the mid-point
nd the end points of line segments, and also the center,
he axes, and the orientation of elliptical arcs can be al-
ered, which precludes a direct comparison of the feature
arameters. To address this problem, we propose closed-
orm distance measures that can also handle breaks.

. Line-to-Line Distance
et ml and il denote a model line segment and image line
egment, respectively. We compare ml and il using dis-
ance measure dl�ml , il�, which is based on the integrated
quared perpendicular distance (ISPD) defined in [5]. The
SPD denoted by ds�ml , il� is given by ds�ml , il�
�len�il� /3��v1

2+v1v2+v2
2�, where v1 and v2 are perpendicu-

ar distances between the infinitely extended model line
l and the two end points of the image line segment il,

nd len �il� denotes the length of il. Distance measure ds
an be used to match line segments despite breaks in
hem. However, it yields a low value even if the line seg-
ents m and i are far apart but are collinear [18]. To

(a) (b)

(c) (d)
ig. 1. (Color online) (a),( b) Images of a computer mouse. (c),
d). Feature representation of Figs. 1(a) and 1(b), respectively.
l l
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vercome this, we modify ds by considering the distance
3 between the mid-points of the model and image line
egments and use it to penalize collinear lines that are far
part. Distance dl�ml , il� is thus given by

dl�ml,il� = �ds�ml,il�, v3 � �l

ds�ml,il� + v3
2, v3 � �l

� , �1�

here threshold �l is set to half the length of the model
ine segment ml, since at the correct transformation, v3
ill never be greater than len�ml� /2, irrespective of the
umber of breaks.

. Ellipse-to-Ellipse Distance
e propose distance measure de to compare a model ellip-

ical arc me with an image elliptical arc ie. Evaluating the
uclidean distance between a point and an ellipse is com-
licated as it involves solving a fourth-order polynomial.
n contrast, the algebraic distance is simpler to compute
27]. The algebraic distance between a point and an el-
ipse increases as the Euclidean distance increases and is
ero when the point lies on the ellipse [28]. Distance de is
btained by integrating the square of the algebraic dis-
ance between a point on ie and model ellipse me along the
mage elliptical arc.

Consider a model ellipse me with center �hm ,km�, major
xis am, and minor axis bm. The algebraic distance be-
ween a point pj= �xj ,yj� and ellipse me is given by ej
��xj−hm�2 /am

2 �+ ��yj−km�2 /bm
2 �−1. When the model el-

ipse has orientation �m,

ej =
�xj cos �m + yj sin �m − hr�2

am
2

+
�− xj sin �m + yj cos �m − kr�2

bm
2 − 1, �2�

here hr=hm cos �m+km sin �m and kr=−hm sin �m
km cos �m.
Consider an image elliptical arc ie with center �hi ,ki�

nd extending from �1 to �2 rad as shown in Fig. 2. Let ai,
i, and �i denote the major axis, the minor axis and the
rientation of ie, respectively. The coordinates of a point
j= �xj ,yj� on ie can be written as xj= ��ai cos � cos �i
bi sin � sin �i�+hi� and yj= ��ai cos � sin �i
bi sin � cos �i�+ki�. The algebraic distance between a
oint on the image elliptical arc and the model ellipse is
hen

(hm, km)

me

αm

θ2 θ

(xj , yj)ie

θ1

(hi, ki)

Fig. 2. Distance between model and image elliptical arcs.
e��� =
�x��� − h��2

am
2 +

�y��� − k��2

bm
2 − 1, �3�

here x���= �ai cos � cos �d−bi sin � sin �d�, y���
�ai cos � sin �d+bi sin � cos �d�, �d=�i−�m, h�= �hm
hi�cos �m+ �km−ki�sin �m, and k�=−�hm−hi�sin �m+ �km
ki�cos �m.
The distance measure de between me and ie is obtained

y integrating the square of the distance e��� from �1 to �2
s

de�me,ie� =�
�1

�2

e2���d�. �4�

Interestingly, this yields a closed form solution for de as
function of model and image ellipse parameters, as

iven in Appendix A.
In Section 2, we noted that the dimensions of ellipses

epresenting the same object can vary across different im-
ges. Figure 3(a) shows a model consisting of an ellipse
nd Fig. 3(b) shows an image in which the model ellipse
as been broken into four smaller arcs. In the represen-
ation shown in Fig. 3(c), we see that the image elliptical
rcs differ in dimensions from the original model due to
reaks in the ellipse. The translation at which distance de
etween the model and image ellipses is a minimum is
hown in Fig. 3(d), which is indeed correct. Thus, the dis-
ance measure de can be used to match elliptical arcs even
hen there are breaks.

. Ellipse-to-Line Distance
e next derive distance measure del

to compare model el-
iptical arcs and image line segments. Consider a line seg-

ent with end points �x1 ,y1� and �x2 ,y2�, and whose equa-
ion is y=mx+g. Also, consider an elliptical arc with
enter �hm ,km�, major axis am, minor axis bm, and orien-

(a) (b)

(c) (d)
ig. 3. (Color online) (a) Model ellipse. (b) Target image contain-

ng a distorted instance of the model. (c) Feature representation
f Fig. 3(b). (d) Model located in the target image.
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ation �m rad. A point on the image line segment can be
ritten as pj= �xj ,yj�= �xj ,mxj+g�. Then, the algebraic dis-

ance between the model ellipse and a point on the image
ine segment is

ejl
=

�uxj + g sin �m − hr�2

am
2 +

�vxj + g cos �m − kr�2

bm
2 − 1,

�5�

here hr=hm cos �m+km sin �m, kr=−hm sin �m
km cos �m, u=cos��m�+m sin��m�, and v=m cos��m�
sin��m�. The square of the algebraic distance ejl

is inte-
rated along the length of the line segment to get the dis-
ance measure del

as

del
=�

x=x1

x=x2��ux + g sin �m − hr�2

am
2

+
�vx + g cos �m − kr�2

bm
2 − 1�2

dx. �6�

n solving Eq. (6), we obtain a closed-form expression for
el

in terms of the line segment and ellipse parameters as
iven in Appendix A.

When the equation of the line segment il is of the form
=g�, the expression for del

can be obtained by expressing
he squared algebraic distance in terms of the variable y
nstead of x, and by integrating it.

. LOCATING THE MODEL
et the feature sets of the given image and the model be
enoted by I and M, respectively. Let IL and ML denote
he set of all line segments of the image and the model,
nd IE and ME denote the set of all elliptical arcs of the
mage and the model, respectively. Then, I=IL�IE and

=ML�ME. The distance measure D between the fea-
ure sets of the model and the image when a transforma-
ion t� · � is applied on the model can be defined as

D�t�M�,I� = max� max
ml�ML

�min
il�IL

�dl�t�ml�,il��	,

max
me�ME

� min
ie,il�I

�de�t�me�,ie�,del
�t�me�,il��	�. �7�

istance D�t�M� ,I� will take a low value only when every
ransformed model feature is close to an image feature.
owever, in practical situations, because of occlusions
nd outliers, only a fraction of the model features may
atch the image features. Hence, D�t�M� ,I� as defined in
q. (7) cannot be used directly to match images.
We use the length of the features (in terms of number of

ixels) as a cue for matching the model and probe image.
et �n denote the fraction of the number of model edge
ixels Nm (obtained from the edge detector) to assert the
resence of the model. Let If denote the set of image fea-
ures that are close to the transformed model features
hen a transformation t� · � is applied on the model; i.e.,

f= �i�I 
 ∃m�M for which d�t�m� , i���d�. Here, �d is the
istance threshold and d can be dl, de, or del

depending on
hether m and i are line segments or elliptical arcs. The
umber of image pixels that match the model is given by
fi=�i�If
len�i�, where len denotes the length of a feature.

or t� · � to qualify as an acceptable transformation, the
ondition to be satisfied is

Nfi

Nm
� �n. �8�

his condition is similar to the forward criterion used in
oint-matching [1].
When a transformation t� · � is applied on the model fea-

ures M and the criterion in Eq. (8) is satisfied, we define
modified measure Dmod�t�M� ,I�. Consider the function

�m� defined on a model feature m as

��m� = min
i�I

d�m,i�, �9�

here d can be dl, de, or del
depending on m and i. For

ach model feature m, the quantity ��m� gives the dis-
ance to the closest feature in I. Let Mf denote the set of
odel features that are matched to image features when
transformation t� · � is applied; i.e., Mf= �m�M 
��t�m��
�d�. Then, we define Dmod�t�M� ,I� as

Dmod�t�M�,I� = max
m�Mf

��t�m�� = max
m�Mf

min
i�I

d�t�m�,i�.

�10�

ote that distance Dmod�t�M� ,I� is analogous to the for-
ard partial Hausdorff distance [1], as it enables match-

ng a fraction of model features. While evaluating Dmod,
e consider only those model features that are close to at

east one of the image features, whereas in D�t�M� ,I� all
he model features are considered.

For computational efficiency, we use cell-decomposition
22] to search the discretized 3-D transformation space
nd find the transformation for which the distance be-
ween features is minimum. Initially, the entire transfor-
ation space is regarded as an interesting cell. At each

tep, we divide the interesting cells into eight sub-cells of
qual size, apply the transformation corresponding to the
enter of a sub-cell on the model features, evaluate the
istance between features, and check whether the condi-
ion in Eq. (8) holds for a large value of �d (initially, as de-
cribed in the experimental section). Only those sub-cells
hat satisfy Eq. (8) are likely to contain the actual trans-
ormation and are regarded as interesting. These cells are
urther sub-divided into eight smaller cells. The threshold
d is gradually reduced as the cell size decreases. In order
o determine If, every model feature is to be compared
ith every image feature. However, this task can be effec-

ively done by restricting the comparison of features
ased on their locations. For a particular model m, we
valuate the distance d�t�m� , i� with only those image fea-
ures i which lie in a region centered around the mid-
oint of the transformed model. The distances with re-
pect to other image features are set to a high value
ithout incurring the cost of evaluating them. The area of

he region is restricted by cell size and the descriptively
ich line segments and elliptical model feature param-
ters. We would like to emphasize that this step is impor-
ant for quickly eliminating uninteresting cells and re-
ults in considerable savings in computations. For further
peed-up, when measuring the distance for model ellipti-
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al arcs, instead of computing de and del
, we use the alge-

raic distance between the end points of the elliptical arc/
ine segment and the model ellipse [Eq. (2)] as the
istance measure. The process of cell-division is contin-
ed recursively until the size of an interesting cell is suf-
ciently small (till the area of the translation grid is
00 pixels and the angular extent is 1°), whence we stop
ividing it and evaluate the distance for all the transfor-
ations corresponding to that cell. In this step, we use

he actual ellipse distance measure given by Eqs. (A1)
nd (A2) (in Appendix A) to accurately find the optimum
ransformation. When multiple instances of the same
odel are present, all those cells that contain the actual

ransformations of the model are regarded as interesting
uring cell-decomposition. Finally, we pick those transfor-
ations for which the distance Dmod�t�M� ,I� is minimized

nd Eq. (8) also holds.

. EXPERIMENTAL RESULTS
or purpose of validation, we tested our algorithm on both
eal and synthetic data. For real examples, we captured
mages containing different objects in such a way that the

odel object underwent only translation and/or in-plane
otation motion. Models were obtained by manually crop-
ing specific regions from edge images. All the experi-
ents were run on a P-IV PC with a 2 GHz processor and

56 MB RAM.
We first present results on real images. The proposed

lgorithm was tested for performance when the model
as to be located in a cluttered environment. In the first
xperiment, we selected the model and probe images from
stereo pair of the Middlebury dataset [29]. The model
as arbitrarily chosen from the left stereo image, and its
dge map and feature representation are shown in Fig.
(a). The aim was to locate the instance of the model in
he right stereo image shown in Fig. 4(b). The model con-
isted of 525 edge pixels and was represented by one el-
ipse and 17 line segments. There were 8626 edge pixels
n the target image and these were represented by 30 el-
ipses and 368 line segments as shown in Fig. 4(c). We
ote that there are many irrelevant features that can ob-
cure the true features of the model. The images were
atched using the proposed scheme with threshold �n
0.9. The optimum transformation parameters of the
odel were correctly determined as can be seen from Fig.

(d), where the transformed model features are overlaid
n image edges for the purpose of depiction. The rotation
ngle was found to be zero degrees, as should be the case
or this translational stereo pair.

We next applied our method to locate the instance of a
odel tube in a pharmaceutical image [Fig. 5(b)]. The
odel edge map and feature representation are shown in
ig. 5(a). Note that the model tube has undergone trans-

ation and rotation in the image of Fig. 5(b). There were
53 pixels in the model and these were represented by
ne elliptical arc and seven line segments [Fig. 5(a)]. The
mage in Fig. 5(b) had 6810 edge points and these were
epresented by four elliptical arcs and 140 line segments
Fig. 5(c)]. The threshold �n was set as 0.9. The model was
orrectly located in the image by our method as seen in
ig. 5(d) which shows the transformed model features
verlaid on the image edges.

In yet another experiment, the objective was to locate
he model table-tennis racket [whose gray-scale image
nd feature representation are shown in Fig. 6(a)] in the
mage shown in Fig. 6(b). We observe that the racket in
ig. 6(b) is occluded by different objects and its illumina-

(a) (b)

(c) (d)
ig. 4. (Color online) (a) Model image and its features. (b) Given

mage. (c) Image features. (d) Model correctly located in the
mage.

(a) (b)

(c) (d)
ig. 5. (Color online) (a) Tube model. (b) Given image. (c) Image

eatures. (d) Output result.
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ion is also different from the model racket of Fig. 6(a).
he model racket consisted of 1724 edge points repre-
ented by 18 line segments and three elliptical arcs [Fig.
(a)]. There were 4771 edge points in the probe image and
hese were represented by 105 line segments and 10 ellip-
ical arcs [Fig. 6(c)]. The model and image features were
atched for �n=0.80. In Fig. 6(c), we observe that the

urved region of the racket is split into two elliptical arcs.
n the region around the handle, we note that some of the
ine segments are broken or are missing due to occlusions.
espite these distortions, the algorithm correctly locates

he model racket in the probe image as shown in Fig. 6(d).
We also tested our algorithm on 20 other real images

nd compared its performance with the standard point-
atching technique (PMT) given in [1]. In our implemen-

ation of PMT, we obtained the distance transform of the
mage using the OpenCv library function ‘cvDistTrans-
orm.’ Through cell-decomposition, we found the transfor-
ation that minimizes the forward Hausdorff distance

etween the model points and image points. The CPU
un-times for both the algorithms were calculated using
he C function ‘clock’. We found that the run-time for our
lgorithm was between 0.3 and 0.7 seconds, while it was
to 6 seconds for PMT. The number of cells examined
hile determining the model translation and rotation pa-

ameters was between 4000 and 8000 for the proposed al-
orithm. In comparison, the number of cells for PMT was
uch higher (between 25,000 and 50,000).
To check our implementation of PMT, we placed syn-

hetically generated models in 50 probe images of size
12�512 pixels such that the models underwent only

(a) (b)

(c) (d)
ig. 6. (Color online) (a) Model racket and its features. (b) Given

mage. (c) Image features. (d) Racket located in the target image.
ranslation. The number of cells examined in the 2-D
ransformation space by our implementation of PMT was
etween 2000 and 3000 which is comparable to what has
een reported in the literature [1]. Note that the number
f cells for translation alone is much smaller as compared
o the case when both translation and rotation are
resent.
For conducting statistical tests, we generated a large

nd competitive synthetic dataset of 1550 probe images
sing 20 different models. Model images of various
hapes were manually created on a grid of size 380
320 pixels. Probe images of size 1080�880 pixels were

enerated by placing a rotated and translated instance of
he model. The angles of rotation varied from 0 to 360° in
teps of 45°. In addition to the model, different line seg-
ents and elliptical arcs having arbitrary parameters,

nd manually generated shapes were added at random lo-
ations in the image in order to simulate breaks due to oc-
lusions, clutter, and illumination variations. The degree
f outliers varied from 100% to 600%. The locations of
hese additional objects were uniformly distributed
hroughout the image.

Using a subset of images from this dataset, we per-
ormed studies of our method under different conditions
ncluding breakpoints, occlusions, clutter, and noise. We
lso studied the effect of resolution of the transformation
pace and threshold �n on speed and accuracy. The thresh-
ld �d was empirically determined as �d=Vcell /300, where
cell is the 3-D volume of an interesting cell. Note that �d
ecreases as cell decomposition progresses. The run-time
nd accuracy were evaluated for different levels of distor-
ion. In order to quantify the accuracy of the model trans-
ormation topt estimated by our algorithm, we define an
rror measure Em= ��pm�Mp

d2�topt�pm� ,Ip�� / �# �Mp��;
here pm denotes a model edge point; Mp and Ip denote

he set of all the edge points of the model and clean probe
mage, respectively; d2�topt�pm� ,Ip� denotes the Euclidean
istance between the transformed model point and its
losest image point, and #�Mp� denotes the total number
f model points. The average value of Em when computed
ver the subset of images is denoted by Eavg.

We first studied the performance of our algorithm in
he presence of breakpoints and under different levels of
cclusions. On every line segment and elliptical arc of a
lean probe image, a breakpoint was created within the
eature at a random location. To simulate the effect of oc-
lusions, a fraction of the number of pixels of the feature
as removed around every breakpoint. To the resultant

mage, a fixed number of outliers was added. For each
evel of occlusion 	oc, we varied the threshold �n and
valuated the run-time on each of the probe images. For
very image, the model was located with error Eavg less
han 0.45 pixels. The average run-time is plotted against
he threshold value �n in Fig. 7(a). Different curves in the
lot correspond to different occlusion fractions as indi-
ated. The curve corresponding to occlusion level 	oc
0.01 denotes the case of a single breakpoint. For each

evel of occlusion, we observe that the run-time decreases
s the threshold �n is increased. For 	oc=0.01, we observe
hat the run-time decreases by about 10% as �n is in-
reased from 0.45 to 0.95. This is because a higher value
f � denotes a stricter condition, which ensures that
n
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ewer cells are treated as interesting in cell-
ecomposition. However, the maximum value of �n that
an be used for an image is dependent on the extent of oc-
lusion it has undergone. For an occlusion level of 	oc, the
aximum value of �n is chosen as �n=0.95−	oc after pro-

iding a 5% margin for error in edge detection. We also
valuated the performance for more than one breakpoint.
ven after introducing three breakpoints per feature, it
as found that the average run-time increased only mar-
inally to 0.411 seconds (as compared to 0.404 seconds for
ne breakpoint per feature) for �n=0.9.

In the following experiment, we study the trade-off be-
ween speed and accuracy. Figure 7(b) shows plots of the
verage run-time (on the left y-axis) and the average er-
or (on the right y-axis) for different resolutions ��x ,�y�
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ig. 7. (Color online) (a) Performance as a function of �n. (b)
peed–accuracy trade-off.
or translation. The resolution of the angle-axis ���� was
ept fixed at 0.5° because poor angular resolution throws
p too many interesting cells. We observe that as the
ranslation resolution is changed from 0.5 to 1.5 pixels,
he average error correspondingly increases from
.4 to 0.78 pixels. Since we adopt cell-decomposition, the
eduction in run-time is very marginal.

As a representative example of the synthetic dataset,
ig. 8(a) shows a model consisting of 872 points and its

eature representation using two elliptical arcs and five
ine segments. An image generated with this model is
hown in Fig. 8(b). The 3467 points of the image were rep-
esented by 17 elliptical arcs and 30 line segments as
hown in Fig. 8(c), where we observe that there are
reaks in the model elliptical arcs due to intersection with
ther shapes. Despite this distortion, the proposed match-
ng algorithm correctly located the model in the image as
hown in Fig. 8(d).

We studied the performance of our method in the pres-
nce of noise by considering the effect of (i) image noise
nd (ii) noisy model parameters. We have already shown
n an earlier experiment [Fig. 7(a)] that our model is ro-
ust to changes in model parameters due to breakpoints
nd occlusions. When independent additive white Gauss-
an (AWG) noise was added to the original gray-scale im-
ge, we found that our algorithm is quite robust and can
olerate image noise levels up to a standard deviation of
0. We also conducted experiments by introducing inde-
endent AWG noise to the estimated parameters of line
egments and ellipses. The tolerance level for each pa-
ameter was found to be as follows: line endpoints (3.0),
llipse center (5.0), length of axes (5.0) and orientation
2.0), where the number in parentheses represents the
aximum permissible standard deviation of noise for that

arameter.

(a) (b)

(c) (d)
ig. 8. (Color online) (a) Model and its features. (b) Probe im-
ge. (c) Image features. (d) Model correctly located in the image.
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We ran the proposed method as well as the point-
atching algorithm over all the 1550 images in our syn-

hetic dataset in groups of ten images at a time. Based on
he performance analysis plots of Fig. 7, we chose �x=�y
0.5 pixels, ��=0.5°, and �n=0.95−	oc. The Eavg for the
roposed algorithm over the entire dataset was found to
e 0.41 pixels which is comparable to that of PMT. Figure
(a) shows a comparison plot for the average number of
ells examined per group of ten images. We observe that
he number of cells examined by the proposed algorithm
s significantly smaller than for the point-matching

ethod. Figure 9(b) shows the corresponding average
un-times. The run-time averaged over all the images was
ust 0.317 seconds for our algorithm, while it was
.8 seconds for PMT. We also implemented our algorithm
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ig. 9. (Color online) Performance comparison over 1550 im-
ges. (a) Number of cells evaluated. (b) CPU run-time per group
or the proposed and the point-matching methods.
ith line segments alone as features. With just line fea-
ures, the curved edges had to be represented by several
ine segments and this approximation was generally not
dentical in the model and probe images. Consequently,
he distance thresholds used in our algorithm had to be
elaxed to arrive at the model transformation. The num-
er of cells to be examined increased due to the relaxed
hresholds. The average run-time was 1.5 seconds using
nly line features. This was mainly due to an increase in
he number of features and number of cells examined.
his value is slightly higher than the average run-time of
.08 seconds reported for the line matching technique in
16].

The performance of our method on all these images
learly demonstrates its effectiveness. The use of higher-
rder features results in a better description of images, as
ery few features are involved. The number of cells exam-
ned for matching is quite lower when compared with the
tandard PMT and the line matching scheme (our algo-
ithm with just line features). Our method is about eight-
o-ten times faster than the standard point-matching al-
orithm.

. CONCLUSIONS
he main contribution of this paper was to propose a

ransformation space-based technique for matching im-
ges using line segments and elliptical arcs. Our ap-
roach provides a compact and rich description of images
n terms of higher-order features. We formulated distance

easures for comparing the features of the model and the
mage. Our method used cell-decomposition for efficiently
earching the transformation space to find the optimal
odel transformation parameters. The algorithm was

ested on several real and synthetic images. The run-time
or the proposed technique is significantly lower than that
f the standard point-matching algorithm.

PPENDIX A: DISTANCE MEASURES
n this appendix, we give closed-form expressions for dis-
ance measures de and del

in Section 3. The variables de-
cribed here are as defined earlier in Subsections 3.B and
.C.

. Ellipse-to-Ellipse Distance
he expression for de after solving the integral in Eq. (4)
an be shown to be

de =
Ix4

− 4h�Ix3
+ 6h�2Ix2

− 4h�3Ix1

am
4 +

Iy4
− 4k�Iy3

bm
4

+
6k�2Iy2

− 4k�3Iy1

bm
4 −

2�Ix2
− 2h�Ix1

+ h�2��2 − �1��

am
2

−
2�Iy2

− 2k�Iy1
+ k�2��2 − �1��

bm
2 +

Ix2y2
+ k�2Ix2

− 2k�Ix2y1

am
2 bm

2

−
2h�Ix1y2

− 2h�k�2Ix1
+ 4h�k�Ix1y1

+ h�2Iy2
− 2h�2k�Iy1

am
2 bm

2
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+ ��2 − �1��h�4

a4 +
k�4

b4 + 1 +
h�2k�2

2a2 b2 
 �A1�

m m m m

r r m m 2 1 m m

A
W
s

R

he terms Ixpyq
=��1

�2xp���yq���d�, Ixp
=��1

�2xp���d�, and Iyq
��1

�2yq���d�. On expansion, we get
• Ix4
=ai

4c4��d�Ic4s0
−4ai

3c3��d�bis��d�Ic3s1
+6ai

2c2��d�bi
2s2��d�Ic2s2

−4bi
3s3��d�aic��d�Ic1s3

+bi
4s4��d�Ic0s4

, where c��d� and
��d� denote cos��d� and sin��d�, respectively, and Icpsq

=��1

�2cp���sq���d�, for p ,q=0,1,2,3,4. For example, Ic1s3
��1

�2c���s3���d�= �s4��2�−s4��1�� /4.
• Iy4

can be obtained from Ix4
by replacing c��d� and s��d� with s��d� and −c��d�, respectively.

• Ix3
=ai

3c3��d�Ic3s0
−3ai

2c2��d�bis��d�Ic2s1
+3bi

2s2��d�aic��d�Ic1s2
−bi

3s3��d�Ic0s3
.

• Iy3
is obtained from Ix3

by replacing c��d� and s��d� with s��d� and −c��d�, respectively.
• Ix2

=ai
2c2��d�Ic2s0

−2aic��d�s��d�Ic1s1
+bi

2s2��d�Ic0s2
.

• Iy2
=ai
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.
• Ix1

=aic��d�Ic1s0
−bis��d�Ic0s1

.
• Iy1

=ais��d�Ic1s0
+bic��d�Ic0s1

.

•

Ix2y2
=ai

4c2��d�s2��d�Ic4s0
+2biai
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• Ix2y1

can be obtained by replacing the terms c��d� and s��d� in Ix1y2
by s��d� and −c��d�, respectively.
. Ellipse-to-Line Distance
n solving the integral in Eqn. (6), the expression for del

urns out to be

del
=
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