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Abstract— Inspired by the recent advances in implicitly representing signals with trained neural networks, we aim to learn a continuous
representation for narrow-baseline 4D light fields. We propose a novel implicit model for 4D light fields conditioned on convolutional
features of a sparse set of input views. This conditioning enables our model to generalize across scenes without retraining the implicit
model for each scene. Our model can be queried at continuous 4D light field coordinates, allowing joint spatial-angular super-resolution at
flexible super-resolution factors. We demonstrate the flexibility of the proposed method with experiments on the tasks of view synthesis,
joint spatial-angular super-resolution on real light fields. Our model outperforms current state-of-the-art baselines on these tasks, while
utilizing only a fraction of run-time of the baselines. Further, our model can also be trained to be robust to varying levels of missing pixels

in the input views.

1 INTRODUCTION

CQUISITION and representation of high quality light

fields is important in many diverse applications such as
virtual reality, microscopy and computational photography.
Light fields (LFs) are characterized using a continuous
four dimensional function which represents the scene ra-
diance along spatial and angular coordinates. As light
fields dimensionally scale as O(n*), acquiring and storing
densely-sampled LFs is expensive and challenging. Hence,
several approaches have been developed to computationally
reconstruct dense LFs from sparse samples [42], [50]. Recently,
several deep learning-based methods have been developed
for efficient reconstruction of photo-realistic novel views
from sparse views [16], [44]. These approaches are often
trained for a specific configuration of input observations and
output resolution and offer limited flexibility.

An emerging class of neural signal representation meth-
ods referred to as implicit representations have attracted high
research interest as of late [33]]. These techniques provide
a continuous function model for signals by parameterizing
them through multi-layer perceptrons (MLPs) which are
composed of deep fully connected neural networks. Apart
from leading to an efficient representation, implicit repre-
sentations offer the flexibility of rendering the signal value
at any desired input location. Recent works, including [33],
[37] have demonstrated remarkable abilities of trained neural
networks in implicitly representing different classes of signals
such as images, videos and 3D shapes. However, these works
typically require training a separate network to represent
each scene.

A few techniques have been developed in recent literature
to generalize the implicit neural representations to a class
of signals, without retraining from scratch for each signal.
Examples of such methods include the use of meta-learning
[32], [36] or training a hyper-network [33], [34] for initial
network weight generation. These methods however require
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further test-time optimization of weights for each signal. An
alternate approach to avoid retraining is to train the implicit
network by providing features from the representation space
in addition to input coordinates in a supervised fashion.
Such an approach has been explored in context of 3D
reconstruction and shape representation in [20], [24], [25], [47]
for image super-resolution [4] and scene representation [49].

In this work, we propose to learn a conditional implicit
representation for 4D light fields which simultaneously can
render scene radiance at continuous 4D query coordinates,
while generalizing across different scenes, without the need
of retraining. We develop a conditional implicit light field
network (CILN) which is conditioned on very sparse set
of input views to generate such implicit light field rep-
resentation. Our formulation is similar to the approaches
of [4], [25], [47], applied to LF data. Our model consists of
a convolutional feature extractor and an implicit decoder.
The CNN feature extractor embeds the input spatio-angular
contextual information into the representation space. For
flexibly decoding at any desired spatial resolution, the ex-
tracted features are resized to the desired resolution leading
to a per-pixel latent feature representation. The 4D scene
radiance is provided by an MLP decoder that is dependent
on both the per-pixel features and the query spatio-angular
coordinates. The use of a CNN feature extractor together
with a conditioned decoder allows for scalable and robust
implicit representations facilitating the reconstruction of fine-
grained detail. Our approach allows super-resolution of input
views simultaneously in both spatial and angular domains
by flexible super-resolution factors.

In Fig. (I} we show a sample result of LF view reconstruc-
tion using our approach. The inputs to our model are the
four corner views that are also of low spatial resolution. Our
CILN model is able to reconstruct good quality LF views
at any desired spatial and angular resolution. In Figs. (1| (c),
(d) and (f), we show the output of our model at different
spatial resolutions. To illustrate angular super-resolution,
we show EPIs [42] in the bottom row of Fig. [1} These EPIs
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Fig. 1: Flexible resolution reconstructions from our single Conditional Implicit Light Field Network (CILN). The input to our
model is a set of 4 corner views selected from the angular grid of size 7x 7. The input views were downsampled even in
spatial domain by a scale factor of 3.3. Our single model produces high quality reconstructions at different super-resolution
factors in both spatial and angular domain. In the bottom row, we illustrate the epipolar plane image (EPI) obtained at

the vertical location indicated by the green line in Fig[l] (). While Figs. [T] (c), (d)

and (f) show flexible spatial domain

reconstruction, the EPI images in Figs. [1| (h) and (j) show angular super-resolution.

show the LF plotted against horizontal spatial and horizontal
angular coordinates for a specific fixed vertical location. Our
reconstructions for different angular resolutions are shown
in Figs.[1] (h) and ().

Our main contributions are summarized below:

e We propose a novel conditional implicit represen-
tation for 4D light fields which can be queried at
continuous coordinates, allowing joint spatial-angular
super-resolution at flexible super-resolution factors.

e Our approach generalizes across scenes without re-
quiring retraining.

e Our model achieves state of the art results on small
baseline view synthesis and spatial angular super-
resolution.

o Using a simple architecture, our model synthesizes
high quality LF views, while utilizing only a fraction
of run-time of competing view synthesis methods.

e Our model can be trained to handle challenging
scenarios, where both the spatial and angular mea-
surements are sparse, with varying levels of missing
pixels.

2 RELATED WORK

LF View Interpolation and Synthesis: Recovery of dense
LFs from sparse views is highly challenging. Many tech-
niques have been proposed to tackle the problem of LF view
interpolation also referred to as angular super-resolution. A
good overview of existing approaches for view synthesis is
available in [50]. We note that techniques have been proposed
to address view synthesis for large baseline LFs such as
. However, we restrict our discussion and comparison
to the works which consider small baseline LFs. Traditional
methods for view interpolation exploit light field geometry
information or sparsity of LFs, for e.g in Fourier domain
[31]], in learned dictionary [27], or in sheared-EPI
representation for variational LF reconstruction. Starting
from [[16], several deep learning based solutions [2], [13],

(14], [19], [30], [401, [43], [44], [45], [46] have been proposed

for synthesizing dense LFs. While some of these methods
[19], [40], employ CNNss to directly regress dense LFs
from input views, others incorporate additional geometric
information such as EPI structure [44], or disparity-based
warping [13], [14], [16], into their network architecture.
While EPI-based methods [44], require input views
on a regular grid, warping based methods can operate on
irregular input views, but they typically need to be trained
for each input configuration and output resolution separately.
Recently, techniques [2], have been proposed that can
generate dense LF from a flexible set of input views. While
proposes to optimize the latent code of a LF generative model
to fit the inputs and observation model, use a plane
sweep volume for disparity estimation from a flexible pattern
of fixed number of input views. However, all the approaches
(13], [14], [16], [19], -, [40], [43], [44], [45] explicitly or
implicitly assume the existence of correspondence across
different input views and cannot handle spatial sparsity with
exception to [2] which requires expensive optimization for
view interpolation, and can only generate views of fixed
angular resolution. Our approach can generate views of
flexible spatial and angular resolution and can also be trained
to handle spatial sparsity.

LF Spatial Super-resolution: Many approaches have been
developed to overcome limited spatial resolution in LFs,
some recent works include [15], [41]. While these works
focus on achieving super-resolution in spatial domain only,
we address a more challenging task of joint spatio-angular
super-resolution by flexible factors. We note that joint spatio-
angular super resolution has been attempted in the work
of Meng et al. [19], for small and fixed spatial and angular
super resolution factors.

Implicit Representations: Recent research [33], has
demonstrated that implicit parameterizations of continuous
functions using trained multi layer perceptrons as a powerful
and efficient alternative to conventional representations.
Applications of implicit representations have been shown
for modeling shapes and objects [9], [10], or scenes [1], [22],
[33], [34], time-varying 3D geometrles and video and
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Fig. 2: Overview of Conditional Implicit Light Field Network

waveform representation [33]], and more recently for 4D LFs
in [6] using a novel input coordinate transformation strategy.
Some of these works, including [1f], [22], [23], [34] make
use of differentiable rendering [38] to learn complex scene
geometries using a sparse set of input views. Additionally,
[1] propose to capture variations across view, time and
lighting conditions by learning compact implicit neural
representations with a learnable view-time geometry model
with hard-coded differentiable rendering and warping. While
all these methods have demonstrated excellent results in
representing a signal, object or scene, they need retraining
for each new instance to achieve faithful representation.
Generalizing Implicit Representations: To avoid retraining
the implicit network from scratch for each new instance
[32], [36] use meta learning to learn initial network weights
for a class of shapes or signals to achieve relatively faster
inference times. However, network weights need further
optimization at test time for each new instance for high
quality representation. An alternate approach to general-
ization is representing instances of signals as latent codes.
Hypernetworks [11]] and conditional implicit networks for
3D shapes [20], [24] use a single low dimensional latent
code for each instance of signal. Closely related to such
approaches are the conditional neural processes [8]. Given a
set of observations and the corresponding locations, referred
to as context-set, the conditional neural processes [8] and
hypernetworks [11], [33], [34] aggregate latent embeddings
extracted by an encoder of all inputs, which are provided to
a hypernetwork to generate implicit network weights [34]
or used to condition an MLP decoder by concatenating with
the queried point as input [8]. Similar input concatenated
latent code conditioning is exploited by the implicit networks
of [20], [24]. While the approach of [20] utilizes an encoder
to directly map the entire context-set to a latent embedding,
the auto-decoder approach of [24] does not have an encoder
and requires optimization at test time to find the optimal
latent embedding corresponding to the input observations.
Though use of a single latent code for representing each
instance in a class of signals, leads to a compact latent
representation, such an approach leads to underfitting the
context information, and therefore cannot capture fine details.
Alternatively, recent approaches [5], [25], [26], [47] utilize
CNNs to generate a tensor of feature embeddings which are
functions of both the input coordinates and observations.
The implicit network then decodes the input query point
using the corresponding feature embedding, which allows
representation of higher resolution details. While [4], [26],

[47], [49] operate on image data and therefore use pixel
aligned implicit representations, [5]], [25] can operate on the
3D point clouds, whose encodings are discretized to regular
grid for further processing by CNNs.

While most conditional implicit networks have focussed

on 3D shape representation and reconstruction, recent works
[4], [49] have developed such representations for arbitrary
super-resolution of images and scene representation respec-
tively. Since LF views are available on a regular grid, we
utilize pixel aligned representations similar to [4]], [26], [47],
[49]. While [4], [26], [47] learn the feature extractor, [49] uses
imagenet pretrained network features. To achieve flexible
spatial resolutions, we spatially upsample features similar
to [4]. To capture the context across views, we learn a fused
embedding at pixel level by training our feature extractor
using concatenated input views, while [26]], [49] average
the features from each view point to obtain an aggregated
embedding.
Recovery from Missing Pixels: Image recovery from sparse
pixels has been studied since several years e.g [17], [18], [48].
Physically random pixel sampling is supported in CMOS
based image sensors [29] found in hand held cameras. While
traditional methods to restore missing pixels [17], [18] can
operate on varying levels of sparsity, deep networks often
cannot handle varying levels of corruption with a single
network [7]. Deep learning based image recovery from
varying levels of missing pixels has been demonstrated in
[8] for a class of images, e.g. face images. However, the
reconstructions are blurry due to underfitting. Similar results
have not been shown for LF recovery.

3 PROPOSED METHOD

Let 4D light fields be denoted by the continuous function
L(z,y, s,t) representing the scene radiance at spatial coor-
dinates (z,y) and angular coordinates (s, t). Our aim is to
approximate this function implicitly using a trained neural
network, which generalizes across scenes. To achieve this
generalization, we condition the implicit neural network
on features of a small set of input views extracted from a
CNN. Fig. 2 provides an overview of the proposed conditional
implicit light field network (CILN) framework, which consist
of two parts: feature extractor Wy, and scene radiance decoder
fo,. In practice, LF acquisition is done on a discrete grid,
with fixed spatial and angular resolutions. We assume that
the input Z to the CNN feature extractor Uy, are v views
having ¢ color channels sampled from an angular grid of
size M x N and spatial extent H x W. To obtain a feature
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Fig. 3: Comparison of synthesized central view of the LF ‘Occlusions16’, for 2 x 2 — 7 x 7 view upsampling. First row shows
the comparison of CILN reconstruction with the ground truth and recovered views using , , . Second row shows
zoomed-in patches corresponding to the marked regions. Error maps are depicted with error magnified by a factor of 5.

representation, which simultaneously captures global context
across views, we concatenate the input views along the color
channel dimension, and train our feature extractor to learn
a fused representation for the input views. We find that a
simple CNN residual architecture with only two dimensional
convolutions can efficiently provide feature representations.
Further, the use of convolutions allows us to handle light
fields of varying spatial extent, and automatically endows
our output features with translational equivariance. Using
appropriate padding in the convolutional layers, we obtain
feature representation Uy, (Z) of dimension H x W x d,
where d is the per-pixel feature dimension. To facilitate recon-
struction at flexible spatial resolutions, we resize the features
to the desired resolution H’'xW’, the resized features are
denoted by ¢(Z).

We utilize a multilayer perceptron (MLP) fo, to implicitly
parameterize the scene radiance function. Given a query
point with spatio-angular coordinates (z,y, s, t), the implicit
decoder fy predicts the scene radiance (RGB values) condi-
tioned on the per-pixel feature representation ¢(Z, (z,y)), i.e
the light field L(z,y, s,t) can be represented as

L($7y75at) :f92 ((b(Ia (xﬂy))7(x7y78ﬂt)) (1)
Implementation: From a ground-truth LF patch of size
MxNxH'xW’, a fixed set of v views are selected as input
1. To facilitate flexible spatial super-resolution, we spatially
downsample the input by different down sampling factors
during training similar to [4]. Features are resized using
bilinear interpolation. We jointly train the feature extractor
Wy, and the implicit network fg, to reconstruct light fields
from the latent embedding, by minimizing loss between the
ground truth pixel values and the reconstructions. The loss
function is a combination of L1 loss and EPI gradient loss
which encourages preservation of LF parallax structure.
The feature extractor consists of four residual 2D CNN
blocks followed by a 1D convolutional layer. The implicit
decoder is an MLP consisting of 2 hidden layers of dimension
320. We will make our code and trained models publicly
available subsequently.

4 EXPERIMENTS

We evaluate our approach on different LF recovery tasks:
i) View interpolation: We train and evaluate our CILN model
for view upsampling from 2 x 2 views to recover 7 x 7 LE.

Further, to demonstrate the flexibility of our approach, we
apply the model trained for 2 x 2 — 7 x 7 LF recovery task
for reconstructing 8 x 8 LFs without any retraining.

ii) Spatial angular super-resolution: We train CILN for flexible
spatial resolutions for 7 x 7 LF recovery, this model is
indicated as ‘Ours!” in the experiments. During training,
we downsample input LF patches by randomly chosen scale
factors ranging between 0.25 and 1. We evaluate this model
for flexible spatial and angular resolutions.

iii) LF recovery from sparse spatio-angular measurements: We
train and evaluate the CILN with varying levels of pixels
missing from the 2 x 2 input views for 7 x 7 LF recovery.
The extent of missing pixels in the input views is randomly
chosen to lie in range 0% — 90% during training. This model
is indicated as ‘Ours'” in the experiments.

We used the training set of Kalantari et al. , consisting of
real light fields captured using a Lytro camera. We evaluate
our approach on the 30 scenes of Kalantari et al.’s test set,
and the selected scenes (following ) from the ‘reflective’
and ‘occlusion’ categories of the Stanford Lytro light field

archive [35].

4.1

We quantitatively validate the performance of our approach
for LF recovery from sparse input views using average PSNR
and SSIM values of novel synthesized views and provide
visual comparisons of the view reconstructions using error
maps with respect to ground truth.

Fixed view interpolation 2 x 2 — 7 x 7: Tab. ] provides
a quantitative comparison between our method and the

View Interpolation

Method 30scenes Occlusions Reflective
39.17/0.975 34.41/0.955 36.38/0.944
40.18/0.975 36.69/0.969 37.59/ 0.952
42.77/0.986  38.88/0.980  38.33/0.960
41.40/0.982 37.25/0.972 38.09/0.953
42.75/0.986 38.51/0.979  38.35/0.957
42.80/0.986 39.36/0.981 39.13/0.960
41.50/0.983 38.44/0.978  38.61/0.958
42.34/0.985 38.83/0.979  38.89/0.960

TABLE 1: Quantitative comparisons (PSNR/SSIM) of pro-
posed CILN with the state-of-the-art view synthesis ap-
proaches for 2 x 2 — 7 x 7 view interpolation.f indicates
model trained for flexible spatial angular super-resolution.
11 indicates model trained for variable pixel sparsity.
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following baselines : i) fully convolutional approaches of
Meng et al. [19] and Yeung et al. [43] ii) warping based LF
synthesis networks of Jin et al. [13] and Kalantari et al. [16]
iii) deep network of Wu et al. [44] incorporating sheared
EPI structures, for the three datasets considered. All the
baselines are trained and tested for the task of 2 x 2 — 7 x 7
view interpolation, with four corner views as input. We train

and test our CILN for 2 X 2 — 7 x 7 view interpolation.

This model is indicated as ‘Ours’ in Tab. [l In addition, we
also compare with our CILN models trained for flexible
spatial-angular super resolution (‘Ours’’) and variable pixel
sparsity (‘Ours’). Since it is very challenging to recover
EPI structures using only 4 corner views, the EPI-based
approach of [44] performs relatively poor, particularly in
complex scenes containing occlusions and reflections. Fully
convolutional approaches [19], [43] and warping based
approaches [13], [16], perform better indicating the advantage
of higher dimensional convolutions and geometry based
warping in effectively modeling the LF structure. Our CILN
trained for 2 x 2 — 7 x 7 view interpolation outperforms
all the baselines, showing marked improvement in complex
scenes containing occlusions and reflections, demonstrating
the advantage of the proposed approach. While our CILN
can be trained to recover LFs at flexible spatial resolutions
(‘Ours’” ), or from variable pixel sparsity (Ours't"), this
results in a slight degradation in performance on the fixed
view interpolation task.

Fig. 3| provides the visual comparison of the synthesized
central view of the scene ‘Occlusion16’. Our approach can
handle complex occlusions quite well as seen in the zoomed
in patches. Error maps indicate superior reconstruction of
our approach, which can preserve fine grained details.

Method 30scenes Occlusions Reflective
Meng et al. [19] 39.25/0.970 35.72/0.964 35.62/0.945
Yeung et al. [43] 41.20/0.982 36.92/0.971  35.74/0.946

Ours’ 41.30/0.982  36.87/0.972  36.02/0.949

TABLE 2: Quantitative comparisons (PSNR/SSIM) of our
proposed CILN with the state-of-the-art view synthesis
approaches for the task 2 x 2 — 8 x 8 view interpolation. *
indicates our model was trained for 7 x 7 view interpolation.

R R S S

Ground truth Yeung etal. [43] Meng etal. [19]

Fig. 4: Comparison of synthesized views at view location

(4,4) of the LF “Flower2’, for 2 x 2 — 8 x 8 view interpolation.

Top row shows the comparison of error maps of CILN
reconstruction and recovered views using [19], [43] with
the ground truth view. Zoomed in patches corresponding to
the marked regions are shown in the second row. Error maps
are depicted with error magnified by a factor of 5.

Flexible view interpolation: To demonstrate the ability of
CILN to recover LFs of flexible angular resolution, we also
evaluate 2 X 2 — 8 x 8 LF recovery using the same model

5

trained for 2 x 2 — 7 x 7 view interpolation. In Tab. 2]and
Fig. [l we provide comparison with the fully convolutional
approaches of Meng et al. [19] and Yeung et al. [43] using
their publicly available code and trained checkpoints. Note
that the baselines have an advantage as they are specifically
trained for 8 x 8 view interpolation. Despite this, Tab.
indicates that our CILN outperforms the baselines in at least
two test datasets, illustrating the benefit of the proposed
approach. Visual comparison of error maps and zoomed in
patches also indicates better reconstructions at the occlusion
boundaries using our approach.

Method X2 x3 X4
Yeung et al. [43]+Bicubic  35.98/0/947 32.91/0.895 31.08/0.849
Yeung et al. [A3]+LIIF [4]  38.02/0.963  35.00/0.928  33.05/0.892
Ours' 38.69/0.968 35.90/0.940 33.99/0.908

TABLE 3: Quantitative comparisons (PSNR/SSIM) of our
proposed CILN with existing approaches for 2 x 2 — 8 x 8
angular and varying spatial upsampling on 30 scenes.

4.2 Flexible spatial-angular super-resolution

Feature resizing incorporated in our network architecture
allows for reconstructions with flexible spatial resolutions.
In our experiments, we train our CILN model (‘Ours’’) to
recover 7 x 7 views from variably downsampled 2 x 2 input
views. We have seen in Tab. [1| that this network performs
view interpolation task, comparable to the baseline meth-
ods, while being slightly worse than our network trained
without downsampling the inputs. To evaluate flexible spatio-
angular super resolution, we test this CILN for the task of
2 x 2 — 8 x 8 view interpolation, with flexible spatial super-
resolution factors without retraining. Since there are no other
existing network-based baselines for flexible spatio-angular
LF upsampling, we compare our scheme by sequentially
applying angular and spatial super-resolution. That is, from
the 2 x 2 input views, we first arrive at 8 x 8 LF views
using the trained model of Yeung et al. [43]. Subsequently,
each of the 8 x 8 views are spatially upsampled using
bicubic interpolation and the state-of-the-art flexible image
super-resolution scheme of LIIF [4]. Note that performing
view interpolation before spatial upsampling preserves LF
structure better than vice-versa.

As seen in Tab. B} our approach achieves the best
performance, indicating the benefit of joint upsampling
using implicit representation. Qualitative comparisons in
Fig.|5|indicate lower error and better reconstruction of fine
grain detail. In contrast, results with separate upsampling
in angular and spatial domains using Yeung et al. [43] and
LIIF [4] have significant artifacts at the occlusion boundaries.
When both spatial and angular resolution of inputs are low,
it becomes highly challenging to recover fine detail. In this
case, even our approach also struggles to recover fine detail
as observed in results of x4 super-resolution in Fig. [5}

4.3 Recovery from sparse spatio-angular inputs

Another benefit of the proposed implicit network is its ability
to recover LFs from measurements which are also spatially
sparse. To evaluate this, we train our CILN model (‘Ours’t’)
on the task of 2 x 2 — 7 x 7 view interpolation, with
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Ground truth Yeung et al. +LHF [E]

x2

x3

Fig. 5: Visual comparison of views at location (4,4) for x4 angular and x2, x3, x4 spatial super-resolutions from
correspondingly down sampled inputs for the scene “1586’. Shown are the ground truth view with marked regions indicating
zoomed in patches, recovered views with our proposed CILN, and flexible spatial super-resolution using LIIF [4] following
view interpolation using Yeung et al. . Error maps are depicted with error magnified by a factor of 5.

inputs

Ground truth Ours p=50% Ours p=90%

Fig. 6: Comparison of synthesized views at angular coordi-
nates (3, 3) for the LF ‘Rock’, with the ground truth view.
First column shows an input view to our method with
missing pixels. ‘p” indicates percentage of missing pixels.
The columns 3 and 4 depict the reconstructed views using
our CILN when 50% and 90% pixels are missing from input
views. Zoomed in patches at the locations marked in the
ground truth are shown.

p 30scenes  Occlusions Reflective
0.00 42.34/0.985 38.83/0.979  38.89/0.960
025 41.90/0.983 38.41/0.978 38.51/0.959
0.50 41.02/0.980 37.54/0.973 37.86/0.954
0.75 38.76/0.970 35.33/0.958 36.33/0.942
0.90 34.59/0.934 31.41/0.907 33.23/0.908

TABLE 4: Average PSNR of novel views in dB for 7 x 7 view
synthesis using CILN trained on varying number of missing
pixels 0-90%. p indicates the fraction of missing pixels.

0 — 90% of pixels, randomly dropped from input views.
At test time, when there is no pixel drop, this results in
only a marginal drop of performance compared to the CILN
trained using clean input views (Tab. [T). The results of
2 x 2 — 7 x 7 view interpolation for varying extents of
missing pixels in the input are reported in Tab. @ Fig. [f]
depicts sample reconstruction of central view when input
views have missing pixels. Even when 50% pixels are
missing from inputs, CILN demonstrates a fairly faithful
recovery, capturing fine details and partial occlusions. The
performance degrades as expected when higher (90%) pixels
are missing. The zoomed in patch in Fig. [] shows the failure
of CILN in recovering partial occlusion when 90% pixels
are missing from input views. Note, that image recovery
from variable levels of missing pixels is a highly challenging
task, and deep networks are generally trained separately for
specific amounts of degradation

Ablation study: In Tab. | we investigate the effectiveness

Coordinate inputs MLP/ Flexible

G0 ) P CNN Loss output  PSNR/SSIM
v v MLP Li+epi-loss v 42.80/0.986
v X MLP Li+epi-loss v 41.27/0.983
X X CNN Li+epi-loss X 42.37/0.984
v v MLP L; loss v 42.52/0.985

TABLE 5: Quantitative comparisons of CILN trained for 7 x 7
view interpolation on 30 scenes test set with and without
spatial coordinate inputs, with and without epi loss, and
using implicit MLP decoder or CNN for view synthesis.

Config. Method 30scenes Occlusions Reflective
u Kalantari ef al. [16]  40.86/0.981  36.63/0.970  38.77/0.954

= Jin et al. | . 42.57/0.986  39.12/0.980  40.00/0.961

u Ours 43.70/0.987  41.01/0.984  41.52/0.968
Kalantari ef al. | . 38.54/0.973  34.83/0.958  36.82/0.950

" Jin et al. [13] 40.98/0.982  37.08/0.971  38.45/0.956
Ours 41.74/0.983  38.57/0.977  39.60/0.960

TABLE 6: Quantitative comparisons (PSNR/SSIM) of our
approach with the view synthesis approaches [13], for
7 x 7 view synthesis from input view configurations depicted
in the first column.

of various components of our architecture and training for
the task of 2 x 2 — 7 x 7 view interpolation. In our CILN
formulation, we provided both spatial coordinates (z,y)
and angular coordinates (s,t) to the implicit network. We
also evaluate the performance by CILN trained when only
angular coordinates are input to CILN. We see that this
results in a significant drop (> 1.5dB) in PSNR, indicating
the importance of providing the 4D coordinates. Further, we
also replace the MLP implicit decoder with a two layer
CNN having kernel size 1 and 49 x 3 output channels
corresponding to the three colors channels of the 7 x 7 views.
Note that this does not have any coordinates as inputs and
can only generate views on a fixed grid. Using such an
architecture results in only a small drop in performance,
showing the ability of simple 2D convolutional models in
achieving competitive performance in fixed small baseline
view interpolation. Our CILN model is trained using a
combination of L; loss and EPI gradient loss [14]. We
also evaluate CILN trained using only L; loss between
reconstruction and ground truth. As we can see in Tab.
this results in a minor drop in performance compared to the
original CILN trained using the combined loss.

Discussion: While we have mainly considered LF recovery
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Algorithm | Running Time | GPU Memory
Meng et al. [19] | 620 ms & 5.37 ms 5776 MiB
Jinetal. [13] | 7.52s £+ 144 ms 8788 MiB
Ours | 237.5ms + 9.32 ms | 10602 MiB

TABLE 7: Mean running time + std. dev. for 2x 2 to 7x 7 view
interpolation over 10 runs. Timing and memory consumption
of [13], [19] are reported for only single channel (Y channel)
view synthesis, whereas the numbers reported are for view
synthesis in all three RGB channels for our approach.

from 2 x 2 input views, our approach can also handle
irregular input views. Tab. [f] shows the results of CILN
for 7 x 7 LF recovery from irregular input views trained
using the optimal sampling patterns from [13] for tasks of
3 — 7 x7and 2 — 7 x 7 LF recovery. We compare with the
warping based approaches [13]], [16] since they can handle
irregular input view configurations. As we can see in Tab.[6]
our approach can also recover high quality LFs from as
low as only 2 input views which are irregularly sampled.
Note that models of [13], [16] are trained for LF recovery
from flexible configuration of fixed number of views. Our
training with fixed pattern sampling likely gives our CILN
an advantage. We will further investigate how to empower
the CILN approach to handle flexible sampling patterns in
future work.

Running time: We compare the running time and memory
consumptions of our method with the methods of Jin et al.
[13] and Meng et al. [19] for the task of 2 x 2 to 7 x 7 view
recovery. This comparison was done on a machine with an
Intel i9-7900X CPU @ 3.30 GHz, 128 GB RAM and an NVIDIA
RTX 2080Ti GPU. For the run time experiments only, we used
input LFs with a patch size of 2 x 2 x 200 x 200. The results
in Tab.[7|show that the simple 2D convolutional architecture
of our network allows a much lower computation time
compared to the other two methods. Note that, our model
outputs all the three color channels in the RGB space while
the outputs of the [13] and [19] correspond to only the
luminence component in the YCbCr space.

5 CONCLUSIONS

In this paper, we presented conditional implicit light field
networks, a novel deep implicit representation for LFs, which
generalizes across scenes. Given sparse input views, our
CILN predicts the scene radiance at any queried point
in the spatial and angular dimensions. Our framework
achieves this by propagating the input context through a
convolutional neural network, to provide pixel level local
fused embeddings. Our implicit network exploits these local
embeddings to capture fine-grained details and generate a
photorealistic LF reconstruction. Qualitative and quantitative
experiments validate that our CILN can provide reconstruc-
tions outperforming recent state of the art approaches for
LF view synthesis on real scenes. Our CILN can generate
LF views at arbitrary spatio-angular resolutions clearly
demonstrating our flexibility. Further, CILN can also be
trained to be robust to varying levels of spatial sparsity
with a single model. Future work may include extending
such implicit representations to much larger baseline light
fields.
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